poj 3255 Roadblocks 次短路(两次dijksta)
Roadblocks
Time Limit : 4000/2000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 15 Accepted Submission(s) : 6
Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.
The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.
The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).
次短路问题,实际上可以这么理解:
在知道最短路的情况下,不走最短路,绕一段路,而且只能绕一段路,否则会不满足次短。
所以就先找到最短路并记录下路径,然后枚举最短路上的每一个点a,从这个点再绕一个点b,然后再加上点b到n的最短路。
所以我们需要知道从1到每个点的最短路,还需要知道从每个点到n的最短路,从每个点到n的最短路就是从n到每个点的最短路
所以两次dijkstra 然后枚举次短路就好啦
邻接矩阵居然超内存
#include <cstring>
#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#define inf 0x3f3f3f3f
const int maxn = ;
using namespace std;
int n, m;
int d1[maxn];
int d2[maxn];
bool book[maxn];
struct edge
{
int to, c;
};
vector<edge> e[maxn];
//用邻接矩阵会超内存
void dijkstra(int s, int *d)
{
memset(d,inf, maxn * sizeof(int));
memset(book, , sizeof(book));
int i;
//for (i = 0; i < e[s].size(); i++) d[e[s][i].to] = e[s][i].c;
//book[s] = 1;
//不能直接赋值,也要进行比较,典型样例
//2 2
//1 2 100
//1 2 200
d[s] = ;
while ()
{
int k = -; int min = inf;
for ( i = ; i<= n;i++)
{
if (!book[i] && d[i] < min)
{
min = d[i];
k = i;
}
}
if (k == -) break; else
{
book[k] = ;
for (i=;i<e[k].size();i++)
{
if (d[e[k][i].to] > d[k] + e[k][i].c)
{
d[e[k][i].to] = d[k] + e[k][i].c;
} }
}
}
} int main()
{
int i;
cin >> n >> m;
for (i = ; i <= m; i++)
{
edge t, t1;
int k;
cin >> k >> t.to >> t.c;
t1.to = k;
t1.c = t.c;
e[k].push_back(t);//双向存。存一个点出发的多个目的地从k出发,目的地是t.to,花费t.c
e[t.to].push_back(t1);
} dijkstra(, d1);
dijkstra(n, d2);//某个点到n的最短路就是n到某个点的最短路
int k = n;
int ans = inf;
int minn = d1[n]; for (k=;k<=n;k++)
{
for (i = ; i<e[k].size(); i++)
{
int ee = d1[k] + e[k][i].c + d2[e[k][i].to];
if (ans>ee&&ee>minn)
{
ans = ee;
}
}
}
cout << ans << endl;
return ;
}
超内存代码且错误代码
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
#include <cstdio>
#define inf 0x3f3f3f3f
using namespace std;
int e[][];
int d1[];
int d2[];
int m, n;
void dijkstra(int s, int *d)
{
int book[];
memset(book, , sizeof(book));
int i;
for (i = ; i <= n; i++)
{
d[i] = e[s][i];
}
book[] = ;
while ()
{
int min = inf;
int k = -;
for (i = ; i <= n; i++)
{
if (d[i] < min&&book[i]==)
{
min = d[i];
k = i;
}
}
if (k == -) break;
book[k] = ;
for (i = ; i <= n; i++)
{
if (book[i] == && d[i] > d[k] + e[k][i])
{
d[i] = d[k] + e[k][i];
}
}
}
}
int main()
{
int i, j;
scanf("%d %d", &m, &n);
for (i = ; i <= n; i++)
{
for (j = ; j <= n; j++)
{
if (i == j) e[i][j] = ;
else
e[i][j] = inf;
}
}
for (i = ; i <= n; i++)
{
int x, y, z;
scanf("%d %d %d", &x, &y,&z);
if (e[x][y] > z)
{
e[x][y] = z;
e[y][x] = z;
}
}
dijkstra(, d1);
dijkstra(n, d2);
int minn = d1[n];
int ans = inf;
for (i = ; i <= n; i++)
{
for (j = ; j <= n; j++)
{
if (i == j) continue;
if (e[i][j] == inf) continue;
if (d1[i] + e[i][j] + d2[j] > minn)
{
ans = min(ans, d1[i] + e[i][j] + d2[j]);
}
}
}
printf("%d\n", ans);
return ;
}
poj 3255 Roadblocks 次短路(两次dijksta)的更多相关文章
- POJ 3255 Roadblocks (次级短路问题)
解决方案有许多美丽的地方.让我们跳回到到达终点跳回(例如有两点)....无论如何,这不是最短路,但它并不重要.算法能给出正确的结果 思考:而最短的路到同一点例程.spfa先正达恳求一次,求的最短路径的 ...
- POJ 3255 Roadblocks (次短路 SPFA )
题目链接 Description Bessie has moved to a small farm and sometimes enjoys returning to visit one of her ...
- POJ 3255 Roadblocks (次短路)
题意:给定一个图,求一条1-n的次短路. 析:次短路就是最短路再长一点呗,我们可以和求最短路一样,再多维护一个数组,来记录次短路. 代码如下: #pragma comment(linker, &quo ...
- POJ 3255 Roadblocks(A*求次短路)
Roadblocks Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 12167 Accepted: 4300 Descr ...
- POJ 3255 Roadblocks (次短路模板)
Roadblocks http://poj.org/problem?id=3255 Time Limit: 2000MS Memory Limit: 65536K Descriptio ...
- poj - 3225 Roadblocks(次短路)
http://poj.org/problem?id=3255 bessie 有时会去拜访她的朋友,但是她不想走最快回家的那条路,而是想走一条比最短的路长的次短路. 城镇由R条双向路组成,有N个路口.标 ...
- 次最短路径 POJ 3255 Roadblocks
http://poj.org/problem?id=3255 这道题还是有点难度 要对最短路径的算法非常的了解 明晰 那么做适当的修改 就可以 关键之处 次短的路径: 设u 到 v的边权重为cost ...
- poj 3255 Roadblocks
Roadblocks Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13216 Accepted: 4660 Descripti ...
- POJ 3255 Roadblocks --次短路径
由于次短路一定存在,则可知次短路一定是最短路中某一条边不走,然后回到最短路,而且只是一条边,两条边以上不走的话,就一定不会是次短路了(即以边换边才能使最小).所以可以枚举每一条边,算出从起点到这条边起 ...
随机推荐
- Java——多线程面试问题
body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...
- (C/C++学习笔记) 十八. 继承和多态
十八. 继承和多态 ● 继承的概念 继承(inheritance): 以旧类为基础创建新类, 新类包含了旧类的数据成员和成员函数(除了构造函数和析构函数), 并且可以派生类中定义新成员. 形式: cl ...
- VS2003在win7 64位的调试
win7 64位下安装了VS2003 ,在调试时,一直加载不了W3P.解决方案是.打开VS时,右键已管理员身份打开,即可调试.
- 去除字符串中的emoji字符
对于使用utf8编码的mysql数据库来说,如果字符串中存在emoji小图像,是不能存进数据库中的,查了一下,原因大概是因为utf8编码可以存1-3个字节的字符,但是emoji是4个字节:解决方法可以 ...
- Alpha阶段敏捷冲刺---Day4
一.Daily Scrum Meeting照片 二.今天冲刺情况反馈 今天我们上完课后在禹洲楼教室外进行我们的每日立会.开会的内容主要是对昨天遇到的困难做了一些交流,并且定下今天的任务是完成排行榜界面 ...
- js 常用事件
onclick 事件会在对象被点击时发生. 请注意, onclick 与 onmousedown 不同.单击事件是在同一元素上发生了鼠标按下事件之后又发生了鼠标放开事件时才发生的. 如:点击验证码时进 ...
- cocos2d-x 2.0.2升级后某些函数变化(转)
最近看cocos2d-x 2.0.2发布后升级了一下,升级后发现又出现了很多错误,原来有一些地方的代码用法改变了.在修改代码的过程中,简单做了一些记录,当做是一个备忘录. 1.CCScene和CCLa ...
- nodejs tutorials
设置npm的镜像为淘宝镜像 npm config list npm config set registry " https://registry.npm.taobao.org "
- 判断颜色信息-RGB2HSV
前言 项目车号识别过程中,车体有三种颜色黑车黑底白字.红车红底白字.绿车黄底绿字,可以通过判断车体的颜色信息,从而判断二值化是否需要反转,主要是基于rgb2hsv函数进行不同颜色的阈值判断. MATL ...
- int类型转string类型c++
前言 使用VS的过程中,经常会用到需要将int类型数据转换为字符串类型,便于显示信息等. 实现方法 c++11标准中的to_string函数,在VS安装文件的include文件中生成的只读文件,使用起 ...