poj 3255 Roadblocks 次短路(两次dijksta)
Roadblocks
Time Limit : 4000/2000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 15 Accepted Submission(s) : 6
Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.
The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.
The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).
次短路问题,实际上可以这么理解:
在知道最短路的情况下,不走最短路,绕一段路,而且只能绕一段路,否则会不满足次短。
所以就先找到最短路并记录下路径,然后枚举最短路上的每一个点a,从这个点再绕一个点b,然后再加上点b到n的最短路。
所以我们需要知道从1到每个点的最短路,还需要知道从每个点到n的最短路,从每个点到n的最短路就是从n到每个点的最短路
所以两次dijkstra 然后枚举次短路就好啦
邻接矩阵居然超内存
#include <cstring>
#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#define inf 0x3f3f3f3f
const int maxn = ;
using namespace std;
int n, m;
int d1[maxn];
int d2[maxn];
bool book[maxn];
struct edge
{
int to, c;
};
vector<edge> e[maxn];
//用邻接矩阵会超内存
void dijkstra(int s, int *d)
{
memset(d,inf, maxn * sizeof(int));
memset(book, , sizeof(book));
int i;
//for (i = 0; i < e[s].size(); i++) d[e[s][i].to] = e[s][i].c;
//book[s] = 1;
//不能直接赋值,也要进行比较,典型样例
//2 2
//1 2 100
//1 2 200
d[s] = ;
while ()
{
int k = -; int min = inf;
for ( i = ; i<= n;i++)
{
if (!book[i] && d[i] < min)
{
min = d[i];
k = i;
}
}
if (k == -) break; else
{
book[k] = ;
for (i=;i<e[k].size();i++)
{
if (d[e[k][i].to] > d[k] + e[k][i].c)
{
d[e[k][i].to] = d[k] + e[k][i].c;
} }
}
}
} int main()
{
int i;
cin >> n >> m;
for (i = ; i <= m; i++)
{
edge t, t1;
int k;
cin >> k >> t.to >> t.c;
t1.to = k;
t1.c = t.c;
e[k].push_back(t);//双向存。存一个点出发的多个目的地从k出发,目的地是t.to,花费t.c
e[t.to].push_back(t1);
} dijkstra(, d1);
dijkstra(n, d2);//某个点到n的最短路就是n到某个点的最短路
int k = n;
int ans = inf;
int minn = d1[n]; for (k=;k<=n;k++)
{
for (i = ; i<e[k].size(); i++)
{
int ee = d1[k] + e[k][i].c + d2[e[k][i].to];
if (ans>ee&&ee>minn)
{
ans = ee;
}
}
}
cout << ans << endl;
return ;
}
超内存代码且错误代码
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
#include <cstdio>
#define inf 0x3f3f3f3f
using namespace std;
int e[][];
int d1[];
int d2[];
int m, n;
void dijkstra(int s, int *d)
{
int book[];
memset(book, , sizeof(book));
int i;
for (i = ; i <= n; i++)
{
d[i] = e[s][i];
}
book[] = ;
while ()
{
int min = inf;
int k = -;
for (i = ; i <= n; i++)
{
if (d[i] < min&&book[i]==)
{
min = d[i];
k = i;
}
}
if (k == -) break;
book[k] = ;
for (i = ; i <= n; i++)
{
if (book[i] == && d[i] > d[k] + e[k][i])
{
d[i] = d[k] + e[k][i];
}
}
}
}
int main()
{
int i, j;
scanf("%d %d", &m, &n);
for (i = ; i <= n; i++)
{
for (j = ; j <= n; j++)
{
if (i == j) e[i][j] = ;
else
e[i][j] = inf;
}
}
for (i = ; i <= n; i++)
{
int x, y, z;
scanf("%d %d %d", &x, &y,&z);
if (e[x][y] > z)
{
e[x][y] = z;
e[y][x] = z;
}
}
dijkstra(, d1);
dijkstra(n, d2);
int minn = d1[n];
int ans = inf;
for (i = ; i <= n; i++)
{
for (j = ; j <= n; j++)
{
if (i == j) continue;
if (e[i][j] == inf) continue;
if (d1[i] + e[i][j] + d2[j] > minn)
{
ans = min(ans, d1[i] + e[i][j] + d2[j]);
}
}
}
printf("%d\n", ans);
return ;
}
poj 3255 Roadblocks 次短路(两次dijksta)的更多相关文章
- POJ 3255 Roadblocks (次级短路问题)
解决方案有许多美丽的地方.让我们跳回到到达终点跳回(例如有两点)....无论如何,这不是最短路,但它并不重要.算法能给出正确的结果 思考:而最短的路到同一点例程.spfa先正达恳求一次,求的最短路径的 ...
- POJ 3255 Roadblocks (次短路 SPFA )
题目链接 Description Bessie has moved to a small farm and sometimes enjoys returning to visit one of her ...
- POJ 3255 Roadblocks (次短路)
题意:给定一个图,求一条1-n的次短路. 析:次短路就是最短路再长一点呗,我们可以和求最短路一样,再多维护一个数组,来记录次短路. 代码如下: #pragma comment(linker, &quo ...
- POJ 3255 Roadblocks(A*求次短路)
Roadblocks Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 12167 Accepted: 4300 Descr ...
- POJ 3255 Roadblocks (次短路模板)
Roadblocks http://poj.org/problem?id=3255 Time Limit: 2000MS Memory Limit: 65536K Descriptio ...
- poj - 3225 Roadblocks(次短路)
http://poj.org/problem?id=3255 bessie 有时会去拜访她的朋友,但是她不想走最快回家的那条路,而是想走一条比最短的路长的次短路. 城镇由R条双向路组成,有N个路口.标 ...
- 次最短路径 POJ 3255 Roadblocks
http://poj.org/problem?id=3255 这道题还是有点难度 要对最短路径的算法非常的了解 明晰 那么做适当的修改 就可以 关键之处 次短的路径: 设u 到 v的边权重为cost ...
- poj 3255 Roadblocks
Roadblocks Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13216 Accepted: 4660 Descripti ...
- POJ 3255 Roadblocks --次短路径
由于次短路一定存在,则可知次短路一定是最短路中某一条边不走,然后回到最短路,而且只是一条边,两条边以上不走的话,就一定不会是次短路了(即以边换边才能使最小).所以可以枚举每一条边,算出从起点到这条边起 ...
随机推荐
- Socket缓冲区
1.由于可读状态是在对方写入数据后或socket关闭时才能出现,因此如果客户端和服务端都停留在read时,如果没有任何一方,向对方写入数据,这将会产生一个死锁. 2.此外,在本地接收操作发起之前,很可 ...
- ansible with_subelements
with_subelements 循环列表中的子元素 (意想不到的地方会用到) --- - hosts: web tasks: - authorized_key: "user={{ item ...
- (转)git合并多个commit
原文地址:http://platinhom.github.io/2016/01/02/git-combine_commit/ 有时commit多了看着会不爽.所以想合并掉一些commit. 这里是最简 ...
- 优化cocos2d/x程序的内存使用和程序大小
本站文章均为李华明Himi原创,转载务必在明显处注明:转载自[黑米GameDev街区] 原文链接: http://www.himigame.com/iphone-cocos2d/1043.html ☞ ...
- 【Android SDK Manager】SDk国内镜像下载地址
中国科学院开源协会镜像站地址: IPV4/IPV6: http://mirrors.opencas.cn 端口:80 IPV4/IPV6: http://mirrors.opencas.org 端口: ...
- [Spring Boot] Spring Boot启动过程源码分析
关于Spring Boot,已经有很多介绍其如何使用的文章了,本文从源代码(基于Spring-boot 1.5.6)的角度来看看Spring Boot的启动过程到底是怎么样的,为何以往纷繁复杂的配置到 ...
- matplotlib.pyplot中add_subplot方法参数111的含义
下述代码若要运行,得在安装Python之外安装matplotlib.numpy.scipy.six等库,专门来看这篇小贴的朋友应该知道这些库. 参数331的意思是:将画布分割成3行3列,图像画在从左到 ...
- 发布网站的时候发现360极速浏览器ie7内核不兼容样式的问题
引言: 在Web应用的开发过程中,发现若干页面在360的浏览器上显示不正常,而在其他的浏览器上,皆为正常状态,问题出在哪里呢? 问题的提出: Web页面在360的浏览器上,显示不正确. 但是在Fir ...
- codeforces1111 简单题【DE】简要题解
D 很显然可以用一个背包算出来凑齐i个位置的方案 然后总的答案就是\(dp_{n / 2}\) 然后需要扣掉不符合条件的就是把选出来的数的贡献剪掉的贡献 然后注意因为是多重集合的排列,所以需要乘上\( ...
- t添加最佳视口
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...