fm 讲解加代码
转自:
博客
http://blog.csdn.net/google19890102/article/details/45532745/
github
https://github.com/zhaozhiyong19890102/Python-Machine-Learning-Algorithm/tree/master/Chapter_3%20Factorization%20Machine
一、因子分解机FM的模型
1、因子分解机FM的优势
2、因子分解机FM的模型
二、因子分解机FM算法
- 回归问题(Regression)
- 二分类问题(Binary Classification)
- 排序(Ranking)
在这里主要介绍回归问题和二分类问题。
1、回归问题(Regression)
2、二分类问题(Binary Classification)
三、因子分解机FM算法的求解过程
1、交叉项系数
2、模型的求解
注:上式中:

,且,倒数第二行中,将 j 换成 i,原式不变,所以能得到倒数第一行的形式。
3、基于随机梯度的方式求解
四、实验(求解二分类问题)
1、实验的代码:
- #coding:UTF-8
- from __future__ import division
- from math import exp
- from numpy import *
- from random import normalvariate#正态分布
- from datetime import datetime
- trainData = 'E://data//diabetes_train.txt'
- testData = 'E://data//diabetes_test.txt'
- featureNum = 8
- def loadDataSet(data):
- dataMat = []
- labelMat = []
- fr = open(data)#打开文件
- for line in fr.readlines():
- currLine = line.strip().split()
- #lineArr = [1.0]
- lineArr = []
- for i in xrange(featureNum):
- lineArr.append(float(currLine[i + 1]))
- dataMat.append(lineArr)
- labelMat.append(float(currLine[0]) * 2 - 1)
- return dataMat, labelMat
- def sigmoid(inx):
- return 1.0 / (1 + exp(-inx))
- def stocGradAscent(dataMatrix, classLabels, k, iter):
- #dataMatrix用的是mat, classLabels是列表
- m, n = shape(dataMatrix)
- alpha = 0.01
- #初始化参数
- w = zeros((n, 1))#其中n是特征的个数
- w_0 = 0. #截距项
- v = normalvariate(0, 0.2) * ones((n, k)) #交叉项
- for it in xrange(iter):
- print it
- for x in xrange(m):#随机优化,对每一个样本而言的
- inter_1 = dataMatrix[x] * v
- inter_2 = multiply(dataMatrix[x], dataMatrix[x]) * multiply(v, v)#multiply对应元素相乘
- #完成交叉项
- interaction = sum(multiply(inter_1, inter_1) - inter_2) / 2.
- p = w_0 + dataMatrix[x] * w + interaction#计算预测的输出
- loss = sigmoid(classLabels[x] * p[0, 0]) - 1
- print loss
- w_0 = w_0 - alpha * loss * classLabels[x]
- for i in xrange(n):
- if dataMatrix[x, i] != 0:
- w[i, 0] = w[i, 0] - alpha * loss * classLabels[x] * dataMatrix[x, i]
- for j in xrange(k):
- v[i, j] = v[i, j] - alpha * loss * classLabels[x] * (dataMatrix[x, i] * inter_1[0, j] - v[i, j] * dataMatrix[x, i] * dataMatrix[x, i])
- return w_0, w, v
- def getAccuracy(dataMatrix, classLabels, w_0, w, v):
- m, n = shape(dataMatrix)
- allItem = 0
- error = 0
- result = []
- for x in xrange(m):
- allItem += 1
- inter_1 = dataMatrix[x] * v
- inter_2 = multiply(dataMatrix[x], dataMatrix[x]) * multiply(v, v)#multiply对应元素相乘
- #完成交叉项
- interaction = sum(multiply(inter_1, inter_1) - inter_2) / 2.
- p = w_0 + dataMatrix[x] * w + interaction#计算预测的输出
- pre = sigmoid(p[0, 0])
- result.append(pre)
- if pre < 0.5 and classLabels[x] == 1.0:
- error += 1
- elif pre >= 0.5 and classLabels[x] == -1.0:
- error += 1
- else:
- continue
- print result
- return float(error) / allItem
- if __name__ == '__main__':
- dataTrain, labelTrain = loadDataSet(trainData)
- dataTest, labelTest = loadDataSet(testData)
- date_startTrain = datetime.now()
- print "开始训练"
- w_0, w, v = stocGradAscent(mat(dataTrain), labelTrain, 20, 200)
- print "训练准确性为:%f" % (1 - getAccuracy(mat(dataTrain), labelTrain, w_0, w, v))
- date_endTrain = datetime.now()
- print "训练时间为:%s" % (date_endTrain - date_startTrain)
- print "开始测试"
- print "测试准确性为:%f" % (1 - getAccuracy(mat(dataTest), labelTest, w_0, w, v))
2、实验结果:
五、几点疑问
- def sigmoid(inx):
- #return 1.0 / (1 + exp(-inx))
- return 1. / (1. + exp(-max(min(inx, 15.), -15.)))
六 图片





fm 讲解加代码的更多相关文章
- 简单的自动化使用--使用selenium实现学习通网站的刷慕课程序。注释空格加代码大概200行不到
简单的自动化使用--使用selenium实现学习通网站的刷慕课程序.注释空格加代码大概200行不到 相见恨晚啊 github地址 环境Python3.6 + pycharm + chrom浏览器 + ...
- [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码
[洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...
- [CodeIgniter4]讲解-加载静态页
讲解 本教程旨在向您介绍CodeIgniter框架和MVC体系结构的基本原理.它将向您展示如何以逐步的方式构造基本的CodeIgniter应用程序. 在本教程中,您将创建一个基本的新闻应用程序.您将从 ...
- Java核心技术及面试指南的视频讲解和代码下载位置
都是百度云盘,均无密码 代码下载位置: https://pan.baidu.com/s/1I44ob0vygMxvmj2BoNioAQ 视频讲解位置: https://pan.baidu.com/s/ ...
- 扩展欧几里得(ex_gcd),中国剩余定理(CRT)讲解 有代码
扩展欧几里得算法 求逆元就不说了. ax+by=c 这个怎么求,很好推. 设d=gcd(a,b) 满足d|c方程有解,否则无解. 扩展欧几里得求出来的解是 x是 ax+by=gcd(a,b)的解. 对 ...
- 傻瓜式的go modules的讲解和代码,及gomod能不能引入另一个gomod和gomod的use of internal package xxxx not allowed
一 国内关于gomod的文章,哪怕是使用了百度 -csdn,依然全是理论,虽然golang的使用者大多是大神但是也有像我这样的的弱鸡是不是? 所以,我就写个傻瓜式教程了. github地址:https ...
- Rainbond 对接 Istio 原理讲解和代码实现分析
一.背景 现有的 ServiceMesh 框架有很多,如 Istio.linkerd等.对于用户而言,在测试环境下,需要达到的效果是快.开箱即用.但在生产环境下,可能又有熔断.延时注入等需求.那么单一 ...
- C++工厂方法模式讲解和代码示例
在C++中使用模式 使用示例: 工厂方法模式在 C++ 代码中得到了广泛使用. 当你需要在代码中提供高层次的灵活性时, 该模式会非常实用. 识别方法: 工厂方法可通过构建方法来识别, 它会创建具体类的 ...
- Vue学习之--------组件嵌套以及VueComponent的讲解(代码实现)(2022/7/23)
欢迎加入刚建立的社区:http://t.csdn.cn/Q52km 加入社区的好处: 1.专栏更加明确.便于学习 2.覆盖的知识点更多.便于发散学习 3.大家共同学习进步 3.不定时的发现金红包(不多 ...
随机推荐
- hadoop入门篇-hadoop下载安装教程(附图文步骤)
在前几篇的文章中分别就虚拟系统安装.LINUX系统安装以及hadoop运行服务器的设置等内容写了详细的操作教程,本篇分享的是hadoop的下载安装步骤. 在此之前有必要做一个简单的说明:分享的所有内容 ...
- 学hadoop需要什么基础
最近一段时间一直在接触关于hadoop方面的内容,从刚接触时的一片空白,到现在也能够说清楚一些问题.这中间到底经历过什么只怕也就是只有经过的人才会体会到吧.前几天看到有个人问“学hadoop需要什么基 ...
- axis2开发webservice总结
需求环境:对接方公司提供wsdl文件,我方按照该wsdl文件开发服务端. 配置axis2开发环境,网上教程很多,不再啰嗦.环境搭好后执行wsdl2java -uri file:///C:/Users/ ...
- Python——递归、二分查找算法
递归函数 1. 递归 (1)什么是递归:在函数中调用自身函数(2)最大递归深度:默认997/998——是Python从内存角度出发做的限制 n = 0 def story(): global n n+ ...
- SQL群集多实例卸载、安装
安装SQL多实例群集: 准备工作:准备SQL群集管理员及服务账号:sqladmin和srv-sql,sqladmin和srv-sql都属于群集节点计算机的administrators组 预留群集名称账 ...
- innotop监控mysql
InnoTop 是一个系统活动报告,类似于Linux性能工具,它与Linux的top命令相仿,并参考mytop工具而设计. 它专门用后监控InnoDB性能和MySQL服务器.主要用于监控事务,死锁,外 ...
- Qt5布局管理(二)——QDockWidget停靠窗口类
转载:LeeHDsniper 停靠窗口类QDockWidget 实例效果 如右图所示,左半部分MainWindow是该窗口的中心窗口,右边的最下面两个停靠窗口可以跳出该窗口: 但是第一个停靠窗口只能停 ...
- testNG断言
https://junit.org/junit4/javadoc/latest/org/junit/Assert.html#assertThat 断言:Hamcrest - Matchers 对象: ...
- 搭建GlusterFS文件系统
(1)环境准备 创建两个虚拟机配置如下 把仅主机第二张网卡配置如下: GlusterFS1 GlusterFS2 上传文件到opt目录下 文件内容如下 (2)GlusterFS安装配置 1.安装Glu ...
- tsql 循环id读取
declare @IDList as varchar(max) declare @ID as int declare @i as int set @IDList='' )) + ',' from ta ...