NumPy: Basic Statistics

from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=13

  • Average versus median

You now know how to use numpy functions to get a better feeling for your data. It basically comes down to importingnumpy and then calling several simple functions on the numpyarrays:

import numpy as np
x = [1, 4, 8, 10, 12]
np.mean(x)
np.median(x)

# np_baseball is available

# Import numpy
import numpy as np

# Create np_height from np_baseball
np_height = np.array(np_baseball)[:,0]

# Print out the mean of np_height
print(np.mean(np_height))

# Print out the median of np_height
print(np.median(np_height))

  • Explore the baseball data

# np_baseball is available

# Import numpy
import numpy as np

# Print mean height (first column)
avg = np.mean(np_baseball[:,0])
print("Average: " + str(avg))

# Print median height. Replace 'None'
med = np.median(np_baseball[:,0])
print("Median: " + str(med))

# Print out the standard deviation on height. Replace 'None'
stddev = np.std(np_baseball[:,0])
print("Standard Deviation: " + str(stddev))

# Print out correlation between first and second column. Replace 'None'
corr = np.corrcoef(np_baseball[:,0],np_baseball[:,1])
print("Correlation: " + str(corr))

  • Blend it all together

You've contacted FIFA for some data and they handed you two lists. The lists are the following:

positions = ['GK', 'M', 'A', 'D', ...]
heights = [191, 184, 185, 180, ...]

Each element in the lists corresponds to a player. The first list,positions, contains strings representing each player's position. The possible positions are: 'GK' (goalkeeper), 'M' (midfield),'A' (attack) and 'D' (defense). The second list, heights, contains integers representing the height of the player in cm. The first player in the lists is a goalkeeper and is pretty tall (191 cm).

You're fairly confident that the median height of goalkeepers is higher than that of other players on the soccer field. Some of your friends don't believe you, so you are determined to show them using the data you received from FIFA and your newly acquired Python skills.

# heights and positions are available as lists

# Import numpy
import numpy as np

# Convert positions and heights to numpy arrays: np_positions, np_heights
np_positions = np.array(positions)
np_heights = np.array(heights)

# Heights of the goalkeepers: gk_heights
gk_heights = np_heights[np_positions == "GK"]

# Heights of the other players: other_heights
other_heights = np_heights[np_positions != "GK"]

# Print out the median height of goalkeepers. Replace 'None'
print("Median height of goalkeepers: " + str(np.median(gk_heights)))

# Print out the median height of other players. Replace 'None'
print("Median height of other players: " + str(np.median(other_heights)))

Intro to Python for Data Science Learning 8 - NumPy: Basic Statistics的更多相关文章

  1. Intro to Python for Data Science Learning 6 - NumPy

    NumPy From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=1 ...

  2. Intro to Python for Data Science Learning 7 - 2D NumPy Arrays

    2D NumPy Arrays from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4- ...

  3. Intro to Python for Data Science Learning 5 - Packages

    Packages From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functio ...

  4. Intro to Python for Data Science Learning 2 - List

    List from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-2-python-list ...

  5. Intro to Python for Data Science Learning 4 - Methods

    Methods From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-function ...

  6. Intro to Python for Data Science Learning 3 - functions

    Functions from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functi ...

  7. Intermediate Python for Data Science learning 2 - Histograms

    Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...

  8. Intermediate Python for Data Science learning 1 - Basic plots with matplotlib

    Basic plots with matplotlib from:https://campus.datacamp.com/courses/intermediate-python-for-data-sc ...

  9. Intermediate Python for Data Science learning 3 - Customization

    Customization from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotl ...

随机推荐

  1. JiraRemoteUserAuth

    配置Jira7.x版本使用REMOTE_USER的HTTP Header方式登录: 前提是已经安装好了JIRA,并且前端使用apache或者nginx拦截对应的地址进行认证,认证之后访问对应的应用的时 ...

  2. VS2013打开2008的项目

    找到 .csproj 后缀的文件.然后右键选择文本打开. 找到下面一段话: <ProjectTypeGuids>-00065b846f21};{fae04ec0-301f-11d3-bf4 ...

  3. 【BZOJ4355】Play with sequence 线段树

    [BZOJ4355]Play with sequence Description 维护一个长度为N的序列a,现在有三种操作: 1)给出参数U,V,C,将a[U],a[U+1],...,a[V-1],a ...

  4. Unity3D笔记 英保通八 关节、 布料、粒子系统

    一.关节1.1..链条关节 Hinge joint :他可以模拟两个物体间用一根链条连接在一起的情况,能保持两个物体在一个固定距离内部相互移动而不产生作用力,但是达到固定距离后就会产生拉力 1.2.. ...

  5. java的前缀自增自减和后缀自增自减

    2.前缀自增自减法(++a,--a): 先进行自增或者自减运算,再进行表达式运算. 3.后缀自增自减法(a++,a--): 先进行表达式运算,再进行自增或者自减运算 实例: 实例 public cla ...

  6. windows下java开发资料汇总

    开发环境搭建:   (1) java开发环境配置    (2) maven环境快速搭建        项目部署:   (1) Eclipse中项目部署方法   (2) 使用Eclipse构建Maven ...

  7. 在CentOS6.8下安装Docker

    在CentOS6.8下安装Docker 一.查看系统版本 [root@localhost opt]# uname -a Linux localhost.localdomain -.el6.x86_64 ...

  8. Java 多线程 线程的五种状态,线程 Sleep, Wait, notify, notifyAll

    一.先来看看Thread类里面都有哪几种状态,在Thread.class中可以找到这个枚举,它定义了线程的相关状态: public enum State { NEW, RUNNABLE, BLOCKE ...

  9. 8.27 jQuery

    2018-8-27 19:38:06 jQuery 参考http://www.cnblogs.com/liwenzhou/p/8178806.html jQuery练习题和 .js文件在Github  ...

  10. Nginx 日志 worker_connections are not enough while connecting to upstream

    记一次,排查错误所遇到的问题,和学习到的内容. 上周五,刚上线的项目出现了503 ,查看日志发现如下内容: System.Exception: Request api/blogpost/zzkDocs ...