NumPy: Basic Statistics

from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=13

  • Average versus median

You now know how to use numpy functions to get a better feeling for your data. It basically comes down to importingnumpy and then calling several simple functions on the numpyarrays:

import numpy as np
x = [1, 4, 8, 10, 12]
np.mean(x)
np.median(x)

# np_baseball is available

# Import numpy
import numpy as np

# Create np_height from np_baseball
np_height = np.array(np_baseball)[:,0]

# Print out the mean of np_height
print(np.mean(np_height))

# Print out the median of np_height
print(np.median(np_height))

  • Explore the baseball data

# np_baseball is available

# Import numpy
import numpy as np

# Print mean height (first column)
avg = np.mean(np_baseball[:,0])
print("Average: " + str(avg))

# Print median height. Replace 'None'
med = np.median(np_baseball[:,0])
print("Median: " + str(med))

# Print out the standard deviation on height. Replace 'None'
stddev = np.std(np_baseball[:,0])
print("Standard Deviation: " + str(stddev))

# Print out correlation between first and second column. Replace 'None'
corr = np.corrcoef(np_baseball[:,0],np_baseball[:,1])
print("Correlation: " + str(corr))

  • Blend it all together

You've contacted FIFA for some data and they handed you two lists. The lists are the following:

positions = ['GK', 'M', 'A', 'D', ...]
heights = [191, 184, 185, 180, ...]

Each element in the lists corresponds to a player. The first list,positions, contains strings representing each player's position. The possible positions are: 'GK' (goalkeeper), 'M' (midfield),'A' (attack) and 'D' (defense). The second list, heights, contains integers representing the height of the player in cm. The first player in the lists is a goalkeeper and is pretty tall (191 cm).

You're fairly confident that the median height of goalkeepers is higher than that of other players on the soccer field. Some of your friends don't believe you, so you are determined to show them using the data you received from FIFA and your newly acquired Python skills.

# heights and positions are available as lists

# Import numpy
import numpy as np

# Convert positions and heights to numpy arrays: np_positions, np_heights
np_positions = np.array(positions)
np_heights = np.array(heights)

# Heights of the goalkeepers: gk_heights
gk_heights = np_heights[np_positions == "GK"]

# Heights of the other players: other_heights
other_heights = np_heights[np_positions != "GK"]

# Print out the median height of goalkeepers. Replace 'None'
print("Median height of goalkeepers: " + str(np.median(gk_heights)))

# Print out the median height of other players. Replace 'None'
print("Median height of other players: " + str(np.median(other_heights)))

Intro to Python for Data Science Learning 8 - NumPy: Basic Statistics的更多相关文章

  1. Intro to Python for Data Science Learning 6 - NumPy

    NumPy From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=1 ...

  2. Intro to Python for Data Science Learning 7 - 2D NumPy Arrays

    2D NumPy Arrays from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4- ...

  3. Intro to Python for Data Science Learning 5 - Packages

    Packages From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functio ...

  4. Intro to Python for Data Science Learning 2 - List

    List from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-2-python-list ...

  5. Intro to Python for Data Science Learning 4 - Methods

    Methods From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-function ...

  6. Intro to Python for Data Science Learning 3 - functions

    Functions from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functi ...

  7. Intermediate Python for Data Science learning 2 - Histograms

    Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...

  8. Intermediate Python for Data Science learning 1 - Basic plots with matplotlib

    Basic plots with matplotlib from:https://campus.datacamp.com/courses/intermediate-python-for-data-sc ...

  9. Intermediate Python for Data Science learning 3 - Customization

    Customization from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotl ...

随机推荐

  1. Centos 安装 MySQL-python

    更新yum yum update yum install mysql-devel yum install gcc yum install python-devel pip install MySQL- ...

  2. 【Servlet】关于RequestDispatcher的原理

    RequestDispatcher简介 RequestDispatcher 代表请求的派发者.它有2个动作:forward 和 include .客户端对于任何一个请求,可以根据业务逻辑需要,选择不同 ...

  3. 【BZOJ5094】硬盘检测 概率

    [BZOJ5094]硬盘检测 Description 很久很久以前,小Q买了一个大小为n单元的硬盘,并往里随机写入了n个32位无符号整数.因为时间过去太久,硬盘上的容量字眼早已模糊不清,小Q也早已忘记 ...

  4. springMVC 几种页面跳转方式

    今天主要写一下响应界面跳转的几种方式 1.在注解的方式中 1.1通过HttpServletResponse的API直接输出(不需要配置渲染器) controller类的主要代码 @Controller ...

  5. thinkCMF----如何写标签

    ThinkCMF写标签的地方:

  6. markdown公式编辑参考

    原文作者,https://www.cnblogs.com/q735613050/p/7253073.html

  7. Oracle数据库查询表信息/列信息(列ID/列名/数据类型/长度/精度/是否可以为null/默认值/是否自增/是否是主键/列描述)

    查询表信息(表名/表描述) Select table_Name As Name,Comments As Value From User_Tab_Comments Where table_Type='T ...

  8. openstack 部署(Q版)-----Mysql、MQ、Memcached安装配置

    一.安装mysql yum install -y mariadb mariadb-server python2-PyMySQL 配置my.cnf文件 vim /etc/my.cnf [mysqld] ...

  9. R数据可视化手册学习简单的绘制常见的图形

    1.绘制散点图 # 使用ggplot2 library(ggplot2) ggplot(data = mtcars, aes(x = wt, y = mpg)) + geom_point() 2.绘制 ...

  10. HDU 5727 - Necklace - [全排列+二分图匹配][Hopcroft-Karp算法模板]

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5727 Problem DescriptionSJX has 2*N magic gems. ...