空间异面直线的距离直接套模板。

求交点:求出两条直线的公共法向量,其中一条直线与法向量构成的平面 与 另一条直线 的交点即可。还是套模板o(╯□╰)o

1.不会有两条线平行的情况。

2.两条直线可能相交

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; const double EPS = 1e-;
const int MAXN = ; struct Point3 //空间点
{
double x, y, z;
Point3( double x=, double y=, double z= ): x(x), y(y), z(z) { }
Point3( const Point3& a )
{
x = a.x;
y = a.y;
z = a.z;
return;
}
void showP()
{
printf("%f %f %f \n", x, y, z);
}
Point3 operator+( Point3& rhs )
{
return Point3( x+rhs.x, y+rhs.y, z+rhs.z );
}
}; struct Line3 //空间直线
{
Point3 a, b;
}; struct plane3 //空间平面
{
Point3 a, b, c;
plane3() {}
plane3( Point3 a, Point3 b, Point3 c ):
a(a), b(b), c(c) { }
void showPlane()
{
a.showP();
b.showP();
c.showP();
return;
}
}; double dcmp( double a )
{
if ( fabs( a ) < EPS ) return ;
return a < ? - : ;
} //三维叉积
Point3 Cross3( Point3 u, Point3 v )
{
Point3 ret;
ret.x = u.y * v.z - v.y * u.z;
ret.y = u.z * v.x - u.x * v.z;
ret.z = u.x * v.y - u.y * v.x;
return ret;
} //三维点积
double Dot3( Point3 u, Point3 v )
{
return u.x * v.x + u.y * v.y + u.z * v.z;
} //矢量差
Point3 Subt( Point3 u, Point3 v )
{
Point3 ret;
ret.x = u.x - v.x;
ret.y = u.y - v.y;
ret.z = u.z - v.z;
return ret;
} //两点距离
double TwoPointDistance( Point3 p1, Point3 p2 )
{
return sqrt( (p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y) + (p1.z - p2.z)*(p1.z - p2.z) );
} //向量的模
double VectorLenth( Point3 p )
{
return sqrt( p.x*p.x + p.y*p.y + p.z*p.z );
} //空间直线距离
double LineToLine( Line3 u, Line3 v, Point3& tmp )
{
tmp = Cross3( Subt( u.a, u.b ), Subt( v.a, v.b ) );
return fabs( Dot3( Subt(u.a, v.a), tmp ) ) / VectorLenth(tmp);
} //取平面法向量
Point3 pvec( plane3 s )
{
return Cross3( Subt( s.a, s.b ), Subt( s.b, s.c ) );
} //空间平面与直线的交点
Point3 Intersection( Line3 l, plane3 s )
{
Point3 ret = pvec(s);
double t = ( ret.x*(s.a.x-l.a.x)+ret.y*(s.a.y-l.a.y)+ret.z*(s.a.z-l.a.z) )/( ret.x*(l.b.x-l.a.x)+ret.y*(l.b.y-l.a.y)+ret.z*(l.b.z-l.a.z) );
ret.x = l.a.x + ( l.b.x - l.a.x ) * t;
ret.y = l.a.y + ( l.b.y - l.a.y ) * t;
ret.z = l.a.z + ( l.b.z - l.a.z ) * t;
return ret;
} /************以上模板*************/ void solved( Line3 A, Line3 B )
{
Point3 normal;
double dis = LineToLine( A, B, normal );
printf( "%.6f\n", dis );
plane3 pla;
pla = plane3( A.a, A.b, A.a + normal );
Point3 u = Intersection( B, pla );
pla = plane3( B.a, B.b, B.a + normal );
Point3 v = Intersection( A, pla );
printf("%.6f %.6f %.6f %.6f %.6f %.6f\n", v.x, v.y, v.z, u.x, u.y, u.z );
return;
} int main()
{
int T;
scanf( "%d", &T );
while ( T-- )
{
Line3 A, B;
scanf("%lf%lf%lf", &A.a.x, &A.a.y, &A.a.z );
scanf("%lf%lf%lf", &A.b.x, &A.b.y, &A.b.z );
scanf("%lf%lf%lf", &B.a.x, &B.a.y, &B.a.z );
scanf("%lf%lf%lf", &B.b.x, &B.b.y, &B.b.z );
solved( A, B );
}
return ;
}

HDU 4741 Save Labman No.004 ( 三维计算几何 空间异面直线距离 )的更多相关文章

  1. hdu 4741 Save Labman No.004异面直线间的距离既构成最小距离的两个端点

    Save Labman No.004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  2. HDU 4741 Save Labman No.004 (2013杭州网络赛1004题,求三维空间异面直线的距离及最近点)

    Save Labman No.004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. hdu 4741 Save Labman No.004 (异面直线的距离)

    转载学习: #include <cstdio> #include <cstdlib> #include <cstring> #include <algorit ...

  4. HDU 4741 Save Labman No.004(计算几何)

    题目链接 抄的模版...mark一下. #include <iostream> #include <cstring> #include <cstdio> #incl ...

  5. [HDU 4741]Save Labman No.004[计算几何][精度]

    题意: 求两条空间直线的距离,以及对应那条距离线段的两端点坐标. 思路: 有一个参数方程算最短距离的公式, 代入求即可. 但是这题卡精度... 用另外的公式(先算出a直线上到b最近的点p的坐标, 再算 ...

  6. HDU 4741 Save Labman No.004 2013 ACM/ICPC 杭州网络赛

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4741 题意:给你两条异面直线,然你求着两条直线的最短距离,并求出这条中垂线与两直线的交点. 需要注意的是 ...

  7. HDU 4741 Save Labman No.004 (几何)

    题意:求空间两线的最短距离和最短线的交点 题解: 线性代数和空间几何,主要是用叉积,点积,几何. 知道两个方向向量s1,s2,求叉积可以得出他们的公共垂直向量,然后公共垂直向量gamma和两线上的点形 ...

  8. hdu 4741 Save Labman No.004 [2013年杭州ACM网络赛]

    // Time 234 ms; Memory 244 K #include<iostream> #include<cstdio> #include<cmath> u ...

  9. hdu 4741 Save Labman No.004(2013杭州网络赛)

    http://blog.sina.com.cn/s/blog_a401a1ea0101ij9z.html 空间两直线上最近点对. 这个博客上给出了很好的点法式公式了...其实没有那么多的tricky. ...

随机推荐

  1. Matlab将矩阵保存为图像

    imwrite(image,'image.jpg'); image为矩阵的内容 image.jpg为要保存的图像的名字

  2. 搭建基于Express框架运行环境

    安装express generator生成器 通过生成器自动创建项目 配置分析 一.安装 cnpm i -g express-generator express --version // 查看版本 e ...

  3. windows tensorflow 简单安装

    需要64位系统windows, 下载64位的python3.5 官网下载地址:https://www.python.org/downloads/release/python-352/ 百度云下载地址: ...

  4. Linux新建用户后的必要设置

    系统:ubnutu 18.04  x64 以下操作全在root下 准备工作: 新建用户  useradd  -m  tom 初始化密码  passwd  tom 1. tab按键 不能自动单词不全 # ...

  5. ethereum(以太坊)(二)--合约中属性和行为的访问权限

    pragma solidity ^0.4.0; contract Test{ /* 属性的访问权限 priveta public internal defualt internal interlnal ...

  6. table选项卡

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...

  7. centos7 php7 安装php扩展

    yum install php70w.x86_64 php70w-cli.x86_64 php70w-common.x86_64 php70w-gd.x86_64 php70w-ldap.x86_64 ...

  8. laravel EncryptCookies中间件导致无法获取自定义cookie

    解决办法: \app\Http\Middleware\EncryptCookies.php 添加过滤cookie key protected $except = [ 'token' ];

  9. windows系统下用VScode配置远程编辑服务器文件的环境!通过Rmate方法

    虽然公司电脑win可以通过Xshell通过SSH远程连接家中内网linux服务器了,但是只能用vim编辑文件有点不爽. 于是上网查询,windows下使用vscode远程编辑服务器文件的办法.参照博文 ...

  10. Python必学:使用哪款文本编辑器更好?

    Python的交互式命令行写程序,好处是一下就能得到结果,坏处是没法保存,下次还想运行的时候,还得再敲一遍. 所以,实际开发的时候,我们总是使用一个文本编辑器来写代码,写完了,保存为一个文件,这样,程 ...