问题

BSGS被用于求解离散对数,即同余方程:

\[A^x\equiv B\pmod{P}
\]

求\(x\)的最小非负整数解。

保证\(A\perp P\)(互质)。

分析

首先,我们根据费马小定理,有

\[A^{P-1}\equiv 1\pmod{P}
\]

则显然有

\[A^{x-k(P-1)}\equiv A^x\pmod{P}
\]

\[A^{x\mod{P-1}}\equiv A^x\pmod{P}
\]

那么显然\(x<P-1\),我们就得到了一个\(O(P)\)的算法,然而太慢了。

考虑分块算法,对\(x\)每\(m\)分一块,则有

\[A^{im-j}\equiv B\pmod{P}
\]

移项整理

\[\left(A^m\right)^i\equiv A^j B\pmod{P}
\]

那么我们枚举\(i\),就可以求出\(A^j\)。再对于\(j\in[0,m-1]\)的\(A^j\)存进哈希表/map,就可以得到\(x=im-j\)了。如果不考虑查询哈希表/map的时间,则时间复杂度为\(O(m+\frac{P}{m})\)。

那\(m\)应该取何值呢?求\(f(m)=m+\frac{P}{m}\)的驻点:

\[\frac{\mathbb{d}f(m)}{\mathbb{d} m}=0
\]

\[1-\frac{P}{m^2}=0
\]

移项整理

\[m^2=P
\]

解得\(m=\sqrt{P}\)。

那么我们令\(m=\lceil\sqrt{P}\rceil\),就得到了一个\(O(\sqrt{P})\)的算法。

代码

\(-1\)为无解。

ll BSGS(ll a,ll b,ll p){
if(!a)return b?-1:1;
if(b==1)return 0;
map<ll,ll>mp;
ll m=ceil(sqrt(p)),ax=1;
for(int i=0;i<m;i++){
mp[ax]=i;
ax=ax*a%p;
}
ll am=pow(a,m,p),aj=am*pow(b,p-2,p)%p;
for(int i=1;i<=m;i++){
if(mp.count(aj))return m*i-mp[aj];
aj=aj*am%p;
}
return -1;
}

例题

[BZOJ2242][SDOI2011]计算器

#include<iostream>
#include<cstdio>
#include<cmath>
#include<map>
using namespace std;
typedef long long ll;
int t,k;
ll y,z,p;
ll pow(ll a,ll b,ll p){
ll ans=1;
while(b){
if(b&1)ans=ans*a%p;
a=a*a%p;
b>>=1;
}
return ans;
}
ll BSGS(ll a,ll b,ll p){
if(!a)return b?-1:1;
if(b==1)return 0;
map<ll,ll>mp;
ll m=ceil(sqrt(p)),ax=1;
for(int i=0;i<m;i++){
mp[ax]=i;
ax=ax*a%p;
}
ll am=pow(a,m,p),aj=am*pow(b,p-2,p)%p;
for(int i=1;i<=m;i++){
if(mp.count(aj))return m*i-mp[aj];
aj=aj*am%p;
}
return -1;
}
int main(){
scanf("%d%d",&t,&k);
while(t--){
scanf("%lld%lld%lld",&y,&z,&p);
if(k==1)printf("%lld\n",pow(y,z,p));
else if(k==2){
if(y%p==0)printf("Orz, I cannot find x!\n");
else printf("%lld\n",pow(y,p-2,p)*z%p);
}else{
ll ans=BSGS(y%p,z%p,p);
if(~ans)printf("%lld\n",ans);
else printf("Orz, I cannot find x!\n");
}
}
}

[BSGS]大步小步算法的更多相关文章

  1. [模板]大步小步算法——BSGS算法

    大步小步算法用于解决:已知A, B, C,求X使得 A^x = B (mod C) 成立. 我们令x = im - j | m = ceil(sqrt(C)), i = [1, m], j = [0, ...

  2. 离散对数及其拓展 大步小步算法 BSGS

    离散对数及其拓展 离散对数是在群Zp∗Z_{p}^{*}Zp∗​而言的,其中ppp是素数.即在在群Zp∗Z_{p}^{*}Zp∗​内,aaa是生成元,求关于xxx的方程ax=ba^x=bax=b的解, ...

  3. 离散对数&&大步小步算法及扩展

    bsgs algorithm ax≡b(mod n) 大步小步算法,这个算法有一定的局限性,只有当gcd(a,m)=1时才可以用 原理 此处讨论n为素数的时候. ax≡b(mod n)(n为素数) 由 ...

  4. 【题解】Matrix BZOJ 4128 矩阵求逆 离散对数 大步小步算法

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4128 大水题一道 使用大步小步算法,把数字的运算换成矩阵的运算就好了 矩阵求逆?这么基础的线 ...

  5. 大步小步算法模板题, poj2417

    大步小步模板 (hash稍微有一点麻烦, poj不支持C++11略坑) #include <iostream> #include <vector> #include <c ...

  6. BSGS算法(大步小步算法)

    计算\(y^x ≡ z \ mod\ p\) 中 \(x\) 的解. 这个模板是最小化了\(x\) , 无解输出\(No \ Solution!\) map<ll,ll>data; ll ...

  7. BSGS-Junior·大步小步算法

    本文原载于:http://www.orchidany.cf/2019/02/06/BSGS-junior/#more \(\rm{0x01}\) \(\mathcal{Preface}\) \(\rm ...

  8. 洛谷 - P4861 - 按钮 - 扩展大步小步算法

    https://www.luogu.org/problemnew/show/P4861 把好像把一开始b==1的特判去掉就可以AC了. #include<bits/stdc++.h> us ...

  9. 浅谈BSGS(大步小步)及其扩展

    用途: 一般用来求\(a^x\equiv b\,\,(mod\,p)\)的最小正整数解,其中gcd(a,p)=1 设\(u=\lceil sqrt(p)\rceil\),则式子可以转化为\(a^{iu ...

随机推荐

  1. JavaScript基础:比较运算符——==与 ===;!=与!==

    var x=10, y="10", m=15 x==y;//返回true x===y;//返回false x!=y;//返回false x!==y;//返回true//同理cons ...

  2. Python基础学习-列表的常用方法

    列表方法 = Python 3.5.2 (default, Sep 14 2016, 11:27:58) [GCC 6.2.1 20160901 (Red Hat 6.2.1-1)] on linux ...

  3. .net core 2.0下的容器注册方法

    https://www.cnblogs.com/Wddpct/p/5764511.html 自带的容器注册方法真的很好用

  4. 在Centos上面用yum不能安装redis的朋友看过来

    我得是centos 6.3,如果直接用yum安装redis,报错,如下:[root@CentOS6 etc]# yum install redisLoaded plugins: fastestmirr ...

  5. CentOS安装配置MongoDB

    1.下载安装包: wget http://fastdl.mongodb.org/linux/mongodb-linux-i686-2.0.3.tgz 2.解压: tar -zxvf mongodb-l ...

  6. python web应用--WSGI接口(二)

    WSGI接口定义非常简单,它只要求Web开发者实现一个函数,就可以响应HTTP请求.我们来看一个最简单的Web版本的“Hello, web!”: 1 # server.py 2 # 从wsgiref模 ...

  7. vector的几种初始化和遍历

    随着C++11标准的出现,vector出现了新的初始化和遍历用法,但是vs2010和较高版本并没有能完全支持C++11标准,所以我就将它的所有的用法归纳了一下. vector的初始化 vector基本 ...

  8. MCV 的几种表单提交方式

    一,MVC  HtmlHelper方法 Html.BeginForm(actionName,controllerName,method,htmlAttributes){}   其中actionName ...

  9. Drupal 新建Modules

    最简单的模块包含了2个文件夹,它们放置于同一个文件夹下:包含模块信息的文件以.info为后缀名,而实现功能的文件则以.module结尾. 可以给模块一个友好的(human-readable)名字,但是 ...

  10. 项目 XXX 受源代码管理。向源代码管理注册此项目时出错。建议不要对此项目进行任何修改

    原本带vss或者svn管理的项目独立复制出来后,如果出现下面问题 解决办法: 使用记事本打开,项目csproj文件删除图中