Red-Black trees are notorious for being nightmares of pointer manipulation. Instructors will show the theory, but won’t torture their students to implement one. Interviewers will avoid asking about it. They probably couldn’t do it themselves.

You should be vaguely familiar with how you might balance a tree. The details, however, are probably unnecessary for the purposes of an interview. – Gayle McDowell, Cracking the coding interview

If you’re proficient in a functional language, you owe it to yourself to implement a Red-Black tree. You’ll be one of the few people that can code a Red-Black tree on a whiteboard.

It will make you realize why people are so excited about the whole functional programming thing.


What is a Red-Black Tree?

A Red-Black tree is a balanced binary search tree. Every node is colored red or black. Three rules hold:

  1. No red node has a red child.
  2. Every path from the root to an empty node contains the same number of black nodes.
  3. An empty node is always black.

Draw a tree with these rules. Notice it’s always relatively-balanced. Try to draw one as unbalanced as possible. You won’t get far.

You can prove the maximum depth of a node is at most 2


Implementation

Let’s implement a set with a Red-Black tree. At minimum we’ll need a member function and an insertfunction.


Data

A tree can be empty, or it can be a node with two subtrees, a color, and an element.

data Tree a = Empty -- Empty does not need a color, it's always black.
| T Color (Tree a) a (Tree a) data Color = R
| B

Member

The member function searches for an element. It’s a binary search.

member :: Ord a => Tree a -> a -> Bool
member (T _ left e right) x | x == e = True
| x < e = member left x
| x > e = member right x
member Empty _ = False

Insert

The insert function uses the function build, which is a constructor that makes sure the node is balanced.

insert :: Ord a => a -> Tree a -> Tree a
insert x s = let T _ a y b = ins s
in T B a y b
where
ins s'@(T color a' y' b')
| x < y' = build color (ins a') y' b'
| x > y' = build color a' y' (ins b')
| otherwise = s'
ins Empty = T R Empty x Empty

There are four cases when build needs to adjust a node. It detects the case when a black parent has a red child with a red child. It shifts the nodes around to fix it. The solution is the same in every case. (Notice the right hand sides of build are the same).

build :: Color -> Tree a -> a -> Tree a -> Tree a
build B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
build B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
build B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
build B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
build color left x right = T color left x right

Afterwards

That’s it. You have a Red-Black tree.

If you want to learn more, read Purely Functional Data Structures by Chris Okasaki. I stole most of my implementation from this book. The build diagram is also from the book.




module RedBlackSet( empty
, member
, insert
) where data Tree a = Empty
| T Color (Tree a) a (Tree a) data Color = R
| B empty :: Ord a => Tree a
empty = Empty member :: Ord a => Tree a -> a -> Bool
member (T _ left e right) x | x == e = True
| x < e = member left x
| x > e = member right x
member Empty _ = False insert :: Ord a => a -> Tree a -> Tree a
insert x s = let T _ a y b = ins s
in T B a y b
where
ins s'@(T color a' y' b')
| x < y' = build color (ins a') y' b'
| x > y' = build color a' y' (ins b')
| otherwise = s'
ins Empty = T R Empty x Empty build :: Color -> Tree a -> a -> Tree a -> Tree a
build B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
build B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
build B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
build B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
build color left x right = T color left x right

The easy way to implement a Red-Black tree的更多相关文章

  1. Red–black tree ---reference wiki

    source address:http://en.wikipedia.org/wiki/Red%E2%80%93black_tree A red–black tree is a type of sel ...

  2. [转载] 红黑树(Red Black Tree)- 对于 JDK TreeMap的实现

    转载自http://blog.csdn.net/yangjun2/article/details/6542321 介绍另一种平衡二叉树:红黑树(Red Black Tree),红黑树由Rudolf B ...

  3. Red Black Tree 红黑树 AVL trees 2-3 trees 2-3-4 trees B-trees Red-black trees Balanced search tree 平衡搜索树

    小结: 1.红黑树:典型的用途是实现关联数组 2.旋转 当我们在对红黑树进行插入和删除等操作时,对树做了修改,那么可能会违背红黑树的性质.为了保持红黑树的性质,我们可以通过对树进行旋转,即修改树中某些 ...

  4. CF1208H Red Blue Tree

    CF1208H Red Blue Tree 原本应该放在这里但是这题过于毒瘤..单独开了篇blog 首先考虑如果 $ k $ 无限小,那么显然整个树都是蓝色的.随着 $ k $ 逐渐增大,每个点都会有 ...

  5. (easy)LeetCode 232.Implement Queue using Stacks

    Implement the following operations of a queue using stacks. push(x) -- Push element x to the back of ...

  6. (easy)LeetCode 225.Implement Stack using Queues

    Implement the following operations of a stack using queues. push(x) -- Push element x onto stack. po ...

  7. 【easy】225. Implement Stack using Queues

    用队列实现栈.这个实现方法十分的简单,就是在push这一步的时候直接变成逆序. class MyStack { private: queue<int> q; queue<int> ...

  8. 2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)

    BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among ...

  9. ZOJ - 4048 Red Black Tree (LCA+贪心) The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online

    题意:一棵树上有m个红色结点,树的边有权值.q次查询,每次给出k个点,每次查询有且只有一次机会将n个点中任意一个点染红,令k个点中距离红色祖先距离最大的那个点的距离最小化.q次查询相互独立. 分析:数 ...

随机推荐

  1. windows

    1.拷贝远程文件 net use \\10.130.80.62\ipc$ 密码 /user:用户名 xcopy "\\10.130.80.62\G$\yt\apache-tomcat-7.0 ...

  2. scp 从远程服务器上一下载文件

    scp -P202 xx3.x6.xx.xx:/usr/local/zookeeper-.zip /tmp #指定远程服务器的端口和远程服务器的目标文件 ,最后指定要下载到本的地目录 也可以从远程服务 ...

  3. JS模块化

    一.原始写法 /* 模块就是实现特定功能的一组方法. 只要把不同的函数(以及记录状态的变量)简单地放在一起,就算是一个模块. 上面的函数m1()和m2(),组成一个模块.使用的时候,直接调用就行了. ...

  4. C# DM5 32位加密

    using System.Security.Cryptography;using System.Text; public static string StringToMD5Hash(string in ...

  5. AVL树的平衡算法(JAVA实现)

      1.概念: AVL树本质上还是一个二叉搜索树,不过比二叉搜索树多了一个平衡条件:每个节点的左右子树的高度差不大于1. 二叉树的应用是为了弥补链表的查询效率问题,但是极端情况下,二叉搜索树会无限接近 ...

  6. js 弹出确认 取消对话框

    一种: <a href="javascript:if(confirm('确实要删除该内容吗?')){location='http://www.google.com'}"> ...

  7. 【原创】内核ShellCode注入的一种方法

    标 题: [原创]内核ShellCode注入的一种方法 作 者: organic 时 间: 2013-05-04,04:34:08 链 接: http://bbs.pediy.com/showthre ...

  8. Domino----The Address Book does not contain a cross certificate capable of validating the public key.

    The Address Book does not contain a cross certificate capable of validating the public key. 地址本不包含交叉 ...

  9. haxe jni调用输入法

    public static void startInputDialog(final String title, final String text, final String buttonLabel, ...

  10. C# 发送邮件中包含图片

    List<string> To = new List<string>(); To.Add("jake_ge@askey.com.tw"); List< ...