Red-Black trees are notorious for being nightmares of pointer manipulation. Instructors will show the theory, but won’t torture their students to implement one. Interviewers will avoid asking about it. They probably couldn’t do it themselves.

You should be vaguely familiar with how you might balance a tree. The details, however, are probably unnecessary for the purposes of an interview. – Gayle McDowell, Cracking the coding interview

If you’re proficient in a functional language, you owe it to yourself to implement a Red-Black tree. You’ll be one of the few people that can code a Red-Black tree on a whiteboard.

It will make you realize why people are so excited about the whole functional programming thing.


What is a Red-Black Tree?

A Red-Black tree is a balanced binary search tree. Every node is colored red or black. Three rules hold:

  1. No red node has a red child.
  2. Every path from the root to an empty node contains the same number of black nodes.
  3. An empty node is always black.

Draw a tree with these rules. Notice it’s always relatively-balanced. Try to draw one as unbalanced as possible. You won’t get far.

You can prove the maximum depth of a node is at most 2


Implementation

Let’s implement a set with a Red-Black tree. At minimum we’ll need a member function and an insertfunction.


Data

A tree can be empty, or it can be a node with two subtrees, a color, and an element.

data Tree a = Empty -- Empty does not need a color, it's always black.
| T Color (Tree a) a (Tree a) data Color = R
| B

Member

The member function searches for an element. It’s a binary search.

member :: Ord a => Tree a -> a -> Bool
member (T _ left e right) x | x == e = True
| x < e = member left x
| x > e = member right x
member Empty _ = False

Insert

The insert function uses the function build, which is a constructor that makes sure the node is balanced.

insert :: Ord a => a -> Tree a -> Tree a
insert x s = let T _ a y b = ins s
in T B a y b
where
ins s'@(T color a' y' b')
| x < y' = build color (ins a') y' b'
| x > y' = build color a' y' (ins b')
| otherwise = s'
ins Empty = T R Empty x Empty

There are four cases when build needs to adjust a node. It detects the case when a black parent has a red child with a red child. It shifts the nodes around to fix it. The solution is the same in every case. (Notice the right hand sides of build are the same).

build :: Color -> Tree a -> a -> Tree a -> Tree a
build B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
build B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
build B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
build B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
build color left x right = T color left x right

Afterwards

That’s it. You have a Red-Black tree.

If you want to learn more, read Purely Functional Data Structures by Chris Okasaki. I stole most of my implementation from this book. The build diagram is also from the book.




module RedBlackSet( empty
, member
, insert
) where data Tree a = Empty
| T Color (Tree a) a (Tree a) data Color = R
| B empty :: Ord a => Tree a
empty = Empty member :: Ord a => Tree a -> a -> Bool
member (T _ left e right) x | x == e = True
| x < e = member left x
| x > e = member right x
member Empty _ = False insert :: Ord a => a -> Tree a -> Tree a
insert x s = let T _ a y b = ins s
in T B a y b
where
ins s'@(T color a' y' b')
| x < y' = build color (ins a') y' b'
| x > y' = build color a' y' (ins b')
| otherwise = s'
ins Empty = T R Empty x Empty build :: Color -> Tree a -> a -> Tree a -> Tree a
build B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
build B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
build B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
build B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
build color left x right = T color left x right

The easy way to implement a Red-Black tree的更多相关文章

  1. Red–black tree ---reference wiki

    source address:http://en.wikipedia.org/wiki/Red%E2%80%93black_tree A red–black tree is a type of sel ...

  2. [转载] 红黑树(Red Black Tree)- 对于 JDK TreeMap的实现

    转载自http://blog.csdn.net/yangjun2/article/details/6542321 介绍另一种平衡二叉树:红黑树(Red Black Tree),红黑树由Rudolf B ...

  3. Red Black Tree 红黑树 AVL trees 2-3 trees 2-3-4 trees B-trees Red-black trees Balanced search tree 平衡搜索树

    小结: 1.红黑树:典型的用途是实现关联数组 2.旋转 当我们在对红黑树进行插入和删除等操作时,对树做了修改,那么可能会违背红黑树的性质.为了保持红黑树的性质,我们可以通过对树进行旋转,即修改树中某些 ...

  4. CF1208H Red Blue Tree

    CF1208H Red Blue Tree 原本应该放在这里但是这题过于毒瘤..单独开了篇blog 首先考虑如果 $ k $ 无限小,那么显然整个树都是蓝色的.随着 $ k $ 逐渐增大,每个点都会有 ...

  5. (easy)LeetCode 232.Implement Queue using Stacks

    Implement the following operations of a queue using stacks. push(x) -- Push element x to the back of ...

  6. (easy)LeetCode 225.Implement Stack using Queues

    Implement the following operations of a stack using queues. push(x) -- Push element x onto stack. po ...

  7. 【easy】225. Implement Stack using Queues

    用队列实现栈.这个实现方法十分的简单,就是在push这一步的时候直接变成逆序. class MyStack { private: queue<int> q; queue<int> ...

  8. 2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)

    BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among ...

  9. ZOJ - 4048 Red Black Tree (LCA+贪心) The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online

    题意:一棵树上有m个红色结点,树的边有权值.q次查询,每次给出k个点,每次查询有且只有一次机会将n个点中任意一个点染红,令k个点中距离红色祖先距离最大的那个点的距离最小化.q次查询相互独立. 分析:数 ...

随机推荐

  1. Linux中不同主机建立免登陆

    ssh-keygen -t rsa scp /root/.ssh/id_rsa.pub  root@192.168.0.236:/root/.ssh/authorized_keys cat /root ...

  2. Lintcode 75.寻找峰值

    --------------------------------------- 按照给定的峰值定义,峰值的左半部分一定是递增的,所以只要找到不递增的即可. AC代码: class Solution { ...

  3. Xocde一次版本升级遇到的问题 (Code Sign Error)

    因为Xcode对ios版本的支持问题,我对XCode进行了一次升级,导致原来还好的项目代码出现了编译时错误. Code Sign Error failed with exit code 1 问题就在于 ...

  4. CSS 代码技巧与维护 ★ Mozilla Hacks – the Web developer blog

    原文链接:https://hacks.mozilla.org/2016/05/css-coding-techniques/ 译文链接 :http://www.zcfy.cc/article/css-c ...

  5. 使用git grep进行git搜索

    1.git grep foo 会自动map所有包含foo的文件 2.git grep -n foo  显示行号 3.git grep --name-only foo 只显示文件名 4.git grep ...

  6. 什么是Angularjs

    AngularJs(后面就简称ng了)是一个用于设计动态web应用的结构框架.首先,它是一个框架,不是类库,是像EXT一样提供一整套方案用于设计web应用.它不仅仅是一个javascript框架,因为 ...

  7. poj分类 很好很有层次感。

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  8. Android下的屏幕适配

    1080 100dp 300px720 100dp 200px 300px 1080px 比例是300/1080=0.277200px 720px

  9. 转:Delphi的类与继承(VB与delphi比较)

    既然已经做出了com程序用delphi来开发的决定,那当然就要对delphi进行一些深入的了解.有人说delphi是一个用控件堆砌起来的工具,和vb没什么两样:也有人说dephi实际上是面向过程的,他 ...

  10. IIS ISAPI

    cscript.exe %SYSTEMDRIVE%\inetpub\adminscripts\adsutil.vbs SET W3SVC/AppPools/Enable32bitAppOnWin64 ...