The easy way to implement a Red-Black tree
Red-Black trees are notorious for being nightmares of pointer manipulation. Instructors will show the theory, but won’t torture their students to implement one. Interviewers will avoid asking about it. They probably couldn’t do it themselves.
You should be vaguely familiar with how you might balance a tree. The details, however, are probably unnecessary for the purposes of an interview. – Gayle McDowell, Cracking the coding interview
If you’re proficient in a functional language, you owe it to yourself to implement a Red-Black tree. You’ll be one of the few people that can code a Red-Black tree on a whiteboard.
It will make you realize why people are so excited about the whole functional programming thing.
What is a Red-Black Tree?

A Red-Black tree is a balanced binary search tree. Every node is colored red or black. Three rules hold:
- No red node has a red child.
- Every path from the root to an empty node contains the same number of black nodes.
- An empty node is always black.
Draw a tree with these rules. Notice it’s always relatively-balanced. Try to draw one as unbalanced as possible. You won’t get far.
You can prove the maximum depth of a node is at most 2
Implementation
Let’s implement a set with a Red-Black tree. At minimum we’ll need a member function and an insertfunction.
Data
A tree can be empty, or it can be a node with two subtrees, a color, and an element.
data Tree a = Empty -- Empty does not need a color, it's always black.
| T Color (Tree a) a (Tree a)
data Color = R
| B
Member
The member function searches for an element. It’s a binary search.
member :: Ord a => Tree a -> a -> Bool
member (T _ left e right) x | x == e = True
| x < e = member left x
| x > e = member right x
member Empty _ = False
Insert
The insert function uses the function build, which is a constructor that makes sure the node is balanced.
insert :: Ord a => a -> Tree a -> Tree a
insert x s = let T _ a y b = ins s
in T B a y b
where
ins s'@(T color a' y' b')
| x < y' = build color (ins a') y' b'
| x > y' = build color a' y' (ins b')
| otherwise = s'
ins Empty = T R Empty x Empty
There are four cases when build needs to adjust a node. It detects the case when a black parent has a red child with a red child. It shifts the nodes around to fix it. The solution is the same in every case. (Notice the right hand sides of build are the same).
build :: Color -> Tree a -> a -> Tree a -> Tree a
build B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
build B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
build B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
build B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
build color left x right = T color left x right

Afterwards
That’s it. You have a Red-Black tree.
If you want to learn more, read Purely Functional Data Structures by Chris Okasaki. I stole most of my implementation from this book. The build diagram is also from the book.
module RedBlackSet( empty
, member
, insert
) where
data Tree a = Empty
| T Color (Tree a) a (Tree a)
data Color = R
| B
empty :: Ord a => Tree a
empty = Empty
member :: Ord a => Tree a -> a -> Bool
member (T _ left e right) x | x == e = True
| x < e = member left x
| x > e = member right x
member Empty _ = False
insert :: Ord a => a -> Tree a -> Tree a
insert x s = let T _ a y b = ins s
in T B a y b
where
ins s'@(T color a' y' b')
| x < y' = build color (ins a') y' b'
| x > y' = build color a' y' (ins b')
| otherwise = s'
ins Empty = T R Empty x Empty
build :: Color -> Tree a -> a -> Tree a -> Tree a
build B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
build B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
build B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
build B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
build color left x right = T color left x right
The easy way to implement a Red-Black tree的更多相关文章
- Red–black tree ---reference wiki
source address:http://en.wikipedia.org/wiki/Red%E2%80%93black_tree A red–black tree is a type of sel ...
- [转载] 红黑树(Red Black Tree)- 对于 JDK TreeMap的实现
转载自http://blog.csdn.net/yangjun2/article/details/6542321 介绍另一种平衡二叉树:红黑树(Red Black Tree),红黑树由Rudolf B ...
- Red Black Tree 红黑树 AVL trees 2-3 trees 2-3-4 trees B-trees Red-black trees Balanced search tree 平衡搜索树
小结: 1.红黑树:典型的用途是实现关联数组 2.旋转 当我们在对红黑树进行插入和删除等操作时,对树做了修改,那么可能会违背红黑树的性质.为了保持红黑树的性质,我们可以通过对树进行旋转,即修改树中某些 ...
- CF1208H Red Blue Tree
CF1208H Red Blue Tree 原本应该放在这里但是这题过于毒瘤..单独开了篇blog 首先考虑如果 $ k $ 无限小,那么显然整个树都是蓝色的.随着 $ k $ 逐渐增大,每个点都会有 ...
- (easy)LeetCode 232.Implement Queue using Stacks
Implement the following operations of a queue using stacks. push(x) -- Push element x to the back of ...
- (easy)LeetCode 225.Implement Stack using Queues
Implement the following operations of a stack using queues. push(x) -- Push element x onto stack. po ...
- 【easy】225. Implement Stack using Queues
用队列实现栈.这个实现方法十分的简单,就是在push这一步的时候直接变成逆序. class MyStack { private: queue<int> q; queue<int> ...
- 2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)
BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among ...
- ZOJ - 4048 Red Black Tree (LCA+贪心) The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online
题意:一棵树上有m个红色结点,树的边有权值.q次查询,每次给出k个点,每次查询有且只有一次机会将n个点中任意一个点染红,令k个点中距离红色祖先距离最大的那个点的距离最小化.q次查询相互独立. 分析:数 ...
随机推荐
- UML大战需求分析——阅读笔记03
读<UML大战需求分析>有感03 状态机图和活动图在样子比较相似,但状态机图是用来为对象的状态及造成状态改变的事件建模.我们大二学习UML统一建模语言状态机图模块时了解到,UML的状态机图 ...
- ASP.NET Boilerplate终于发布v1.0了
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:ABP经过2年多的开发,终于发布第一个主要版本了,谨此提醒ABP的使用者. ASP.N ...
- [译]:Xamarin.Android平台功能——位置服务
返回索引目录 原文链接:Location Services. 译文链接:Xamarin.Android平台功能--位置服务 本部分介绍位置服务以及与如何使用位置提供商服务 Location Servi ...
- pdf2htmlEx安装及测试
pdf2htmEx转换效果优秀,可以将pdf转换为html文件,转换速度很快 有两种输出形式, 1.一个pdf对应一个html文件,转换出来的html文件较大 2.一个pdf对应多个html页面,且可 ...
- vmware 中ubuntu客户机 安装vmware tool vmhgfs 共享文件夹失败处理
vmware版本:10.0.0 build-1295980 ubuntu版本:3.13.0-62-generic 先安装的vmware workstation自带光盘中vmare tools包,安装完 ...
- artTemplate-master的应用
刚开始,在没有使用这个模板之前,一致都是后台返回一个json的字符串,来在前端自己拼接字符串,不但麻烦,而且费时费力,而且还有时候经常拼接错误!导致了工作效率的延长 js模板的使用 <scrip ...
- Tween Animation---Scale渐变尺寸缩放动画
博主都是自己把代码测试过了才给大家分享的 在res/创建一个anim文件夹用来保存动画属性的xml 新建一个scale.xml <?xml version="1.0" enc ...
- 利用DNS Zone Transfers漏洞工具dnswalk
利用DNS Zone Transfers漏洞工具dnswalk DNS Zone Transfers(DNS区域传输)是指一台备用服务器使用来自主服务器的数据刷新自己的域(zone)数据库.当主服 ...
- Hackerrank11 LCS Returns 枚举+LCS
Given two strings, a and , b find and print the total number of ways to insert a character at any p ...
- DelphiXE10.1获取Administrator所有权的方法
操作: 菜单选择Proceject->Options->Application->把Enable Admonistrator Privileges打勾(manifest file - ...