The easy way to implement a Red-Black tree
Red-Black trees are notorious for being nightmares of pointer manipulation. Instructors will show the theory, but won’t torture their students to implement one. Interviewers will avoid asking about it. They probably couldn’t do it themselves.
You should be vaguely familiar with how you might balance a tree. The details, however, are probably unnecessary for the purposes of an interview. – Gayle McDowell, Cracking the coding interview
If you’re proficient in a functional language, you owe it to yourself to implement a Red-Black tree. You’ll be one of the few people that can code a Red-Black tree on a whiteboard.
It will make you realize why people are so excited about the whole functional programming thing.
What is a Red-Black Tree?

A Red-Black tree is a balanced binary search tree. Every node is colored red or black. Three rules hold:
- No red node has a red child.
- Every path from the root to an empty node contains the same number of black nodes.
- An empty node is always black.
Draw a tree with these rules. Notice it’s always relatively-balanced. Try to draw one as unbalanced as possible. You won’t get far.
You can prove the maximum depth of a node is at most 2
Implementation
Let’s implement a set with a Red-Black tree. At minimum we’ll need a member function and an insertfunction.
Data
A tree can be empty, or it can be a node with two subtrees, a color, and an element.
data Tree a = Empty -- Empty does not need a color, it's always black.
| T Color (Tree a) a (Tree a)
data Color = R
| B
Member
The member function searches for an element. It’s a binary search.
member :: Ord a => Tree a -> a -> Bool
member (T _ left e right) x | x == e = True
| x < e = member left x
| x > e = member right x
member Empty _ = False
Insert
The insert function uses the function build, which is a constructor that makes sure the node is balanced.
insert :: Ord a => a -> Tree a -> Tree a
insert x s = let T _ a y b = ins s
in T B a y b
where
ins s'@(T color a' y' b')
| x < y' = build color (ins a') y' b'
| x > y' = build color a' y' (ins b')
| otherwise = s'
ins Empty = T R Empty x Empty
There are four cases when build needs to adjust a node. It detects the case when a black parent has a red child with a red child. It shifts the nodes around to fix it. The solution is the same in every case. (Notice the right hand sides of build are the same).
build :: Color -> Tree a -> a -> Tree a -> Tree a
build B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
build B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
build B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
build B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
build color left x right = T color left x right

Afterwards
That’s it. You have a Red-Black tree.
If you want to learn more, read Purely Functional Data Structures by Chris Okasaki. I stole most of my implementation from this book. The build diagram is also from the book.
module RedBlackSet( empty
, member
, insert
) where
data Tree a = Empty
| T Color (Tree a) a (Tree a)
data Color = R
| B
empty :: Ord a => Tree a
empty = Empty
member :: Ord a => Tree a -> a -> Bool
member (T _ left e right) x | x == e = True
| x < e = member left x
| x > e = member right x
member Empty _ = False
insert :: Ord a => a -> Tree a -> Tree a
insert x s = let T _ a y b = ins s
in T B a y b
where
ins s'@(T color a' y' b')
| x < y' = build color (ins a') y' b'
| x > y' = build color a' y' (ins b')
| otherwise = s'
ins Empty = T R Empty x Empty
build :: Color -> Tree a -> a -> Tree a -> Tree a
build B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
build B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
build B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
build B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
build color left x right = T color left x right
The easy way to implement a Red-Black tree的更多相关文章
- Red–black tree ---reference wiki
source address:http://en.wikipedia.org/wiki/Red%E2%80%93black_tree A red–black tree is a type of sel ...
- [转载] 红黑树(Red Black Tree)- 对于 JDK TreeMap的实现
转载自http://blog.csdn.net/yangjun2/article/details/6542321 介绍另一种平衡二叉树:红黑树(Red Black Tree),红黑树由Rudolf B ...
- Red Black Tree 红黑树 AVL trees 2-3 trees 2-3-4 trees B-trees Red-black trees Balanced search tree 平衡搜索树
小结: 1.红黑树:典型的用途是实现关联数组 2.旋转 当我们在对红黑树进行插入和删除等操作时,对树做了修改,那么可能会违背红黑树的性质.为了保持红黑树的性质,我们可以通过对树进行旋转,即修改树中某些 ...
- CF1208H Red Blue Tree
CF1208H Red Blue Tree 原本应该放在这里但是这题过于毒瘤..单独开了篇blog 首先考虑如果 $ k $ 无限小,那么显然整个树都是蓝色的.随着 $ k $ 逐渐增大,每个点都会有 ...
- (easy)LeetCode 232.Implement Queue using Stacks
Implement the following operations of a queue using stacks. push(x) -- Push element x to the back of ...
- (easy)LeetCode 225.Implement Stack using Queues
Implement the following operations of a stack using queues. push(x) -- Push element x onto stack. po ...
- 【easy】225. Implement Stack using Queues
用队列实现栈.这个实现方法十分的简单,就是在push这一步的时候直接变成逆序. class MyStack { private: queue<int> q; queue<int> ...
- 2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)
BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among ...
- ZOJ - 4048 Red Black Tree (LCA+贪心) The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online
题意:一棵树上有m个红色结点,树的边有权值.q次查询,每次给出k个点,每次查询有且只有一次机会将n个点中任意一个点染红,令k个点中距离红色祖先距离最大的那个点的距离最小化.q次查询相互独立. 分析:数 ...
随机推荐
- MarkdownPad2 表格不显示处理
1.添加表格的扩展 工具 >选项 > Markdown >Markdown处理器 改为 “Markdown(扩展)”即可. 2.在设置的过程中要注册markdownpad2 邮箱: ...
- Mysql中eft join、right join、inner join的区别
left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) 返回包括右表中的所有记录和左表中联结字段相等的记录inner join(等值连接) 只 ...
- 谷歌浏览器对uploadify(swf)上传控件 崩溃问题
页面加上 <script type="text/javascript" src=@Url.Content("~/Content/js/jquery.uploadif ...
- 【Android】一种提高Android应用进程存活率新方法
[Android]一种提高Android应用进程存活率新方法 SkySeraph Jun. 19st 2016 Email:skyseraph00@163.com 更多精彩请直接访问SkySeraph ...
- nodejs持续学习--必须关注4网站
1.官网:https://nodejs.org/en/ 2.模块社区:www.npmjs.com(FQ) 3.github.com 4.全球技术问题讨论社区 http://stackoverflow. ...
- racket
let 和 let* 区别 ``` racket // 这是对的 (let* ([x (random 4)][o (random 4)] [diff (number->string (abs ( ...
- SpringMVC(六) RequestMapping 路径中ant风格的通配符
SpringMVC支持路径中包含ant风格的通配符,常用的几种通配符及意义如下: ? 任意一个字符 * 任意多个字符 ** 匹配多层路径 测试控制器代码: package com.tiekui.spr ...
- Web.xml配置参数详解
1 定义头和根元素 部署描述符文件就像所有XML文件一样,必须以一个XML头开始.这个头声明可以使用的XML版本并给出文件的字符编码.DOCYTPE声明必须立即出现在此头之后.这个声明告诉服务器适用的 ...
- Scrapy框架实现爬虫
实战中的遇到的问题总结: 1.
- webrtc中APM(AudioProcessing module)的使用
一,实例化和配置 AudioProcessing* apm = AudioProcessing::Create(0); //这里的0指的是channelID,只是一个标注那个通道的表示 apm-> ...