Batch Scheduling
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4347   Accepted: 1992

Description

There is a sequence of N jobs to be processed on one machine. The jobs are numbered from 1 to N, so that the sequence is 1,2,..., N. The sequence of jobs must be partitioned into one or more batches, where each batch consists of consecutive jobs in the sequence. The processing starts at time 0. The batches are handled one by one starting from the first batch as follows. If a batch b contains jobs with smaller numbers than batch c, then batch b is handled before batch c. The jobs in a batch are processed successively on the machine. Immediately after all the jobs in a batch are processed, the machine outputs the results of all the jobs in that batch. The output time of a job j is the time when the batch containing j finishes.

A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs, the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153.

You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost.

Input

Your program reads from standard input. The first line contains the number of jobs N, 1 <= N <= 10000. The second line contains the batch setup time S which is an integer, 0 <= S <= 50. The following N lines contain information about the jobs 1, 2,..., N in that order as follows. First on each of these lines is an integer Ti, 1 <= Ti <= 100, the processing time of the job. Following that, there is an integer Fi, 1 <= Fi <= 100, the cost factor of the job.

Output

Your program writes to standard output. The output contains one line, which contains one integer: the minimum possible total cost.

Sample Input

5
1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

Source

题意:N个任务排成一个序列在一台机器上等待接连完成,这N个任务被分成若干批相邻任务。 第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的所用时间乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。(1 <= N <= 10000)
思路:sumT[i]表示从i到n的任务所需要的时间总和,sumF[i]表示从i到n的费用系数总和,dp[i]表示对于从i到n的任务安排的最优解:

dp[i]=min(dp[j]+(sunT[i]-sumT[j]+s)*sumF[i]) (1<=i<=n+1;i<j<=n+1)

我们考虑在计算dp[i]时,对于i < j < k来说, 如果保证决策k比决策j大的条件是:dp[j] + (S + sumT[i] - sumT[j]) * sumF[i] < dp[k] + (S + sumT[i] -sumT[k]) * sumF[i]

通过移项整理,可以化简为:(dp[j] - dp[k]) / (sumT[j] - sumT[k]) < sumF[i]

可知当我们计算dp[i]时,若(dp[j] - dp[k]) / (sumT[j] - sumT[k]) >=sumF[i]时我们可以舍弃j(决策K优于决策J);

因此我们可以用一个单调队列,对于元素i需要入对时,(i<j<k),我们如何维护呢,不妨设函数Q(j,k)=(dp[j] - dp[k]) / (sumT[j] - sumT[k]);

因为i需要入对,我们需要讨论的即是对于决策j,我们是否需要保留,(下面我们来讨论J需要舍弃的条件);

如果j需要舍弃,即对于决策i,j,i优于j;对于决策j,k,k优于j;故此我们有Q(i,j)<sumF[i],sumF[i]<=Q(j,k);  即推出 Qi,j)<Q(j,k);

综上:可以考虑维护一个斜率的队列来优化整个DP过程:

(1)假设i(马上要入队的元素)<j< k依次是队列尾部的元素,那么我们就要考虑Q(i,j)是否大于Q(j,k),如果Q(i,j) < Q(j,k),那么可以肯定j一定不会是决策点,可以从队列中将j去掉,依次向前推,直到找到一个队列元素少于2个或者Q(i,j)>= Q(j,k)的点才停止。

(2)假设k>j(k是头元素)是依次是队列头部的元素,如果g(j,k) < sumF[i]的话,那么对于i来说决策点j肯定优于决策点k,又由于sumF[i]是随着i减少而递增的,

所以当Q(j,k) < sumF[i]时,就一定有Q(j,k) < sumF[i-1],因此当前的决策点k不仅仅在考虑dp[i]时不会是最佳决策点,而且在后面的DP中也一定不会是最佳决策点,所以我们可以把k从队列 的头部删除,依次往后如此操作,直到队列元素小于2或者Q(j,k)>= sumF[i]。

代码:

 #include<sstream>
#include<iomanip>
#include"cstdio"
#include"map"
#include"set"
#include"cmath"
#include"queue"
#include"vector"
#include"string"
#include"cstring"
#include"time.h"
#include"iostream"
#include"stdlib.h"
#include"algorithm"
#define db double
#define ll long long
#define vec vectr<ll>
#define mt vectr<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
//#define rep(i, x, y) for(int i=x;i<=y;i++)
#define rep(i, n) for(int i=0;i<n;i++)
const int N = 1e4+ ;
const int mod = 1e9 + ;
const int MOD = mod - 1;
const int inf = 0x3f3f3f3f;
const db PI = acos(-1.0);
const db eps = 1e-;
using namespace std;
ll dp[N];
int st[N],sf[N],deq[N];
int t[N],f[N];
int n,s;
db cal(int x,int y){
return db(dp[x]-dp[y])/db(st[x]-st[y]);
}
int main()
{
ci(n),ci(s);
for(int i=;i<=n;i++) ci(t[i]),ci(f[i]);
for(int i=n;i;i--) st[i]=st[i+]+t[i],sf[i]=sf[i+]+f[i];
int l=,r=;
dp[n]=(s+st[n])*sf[n];
deq[++r]=n;
for(int i=n-;i;i--)
{
while(r-l>= && cal(deq[l],deq[l+])<sf[i]) l++;
int tt=s+st[i];
tt*=sf[i];
dp[i]=tt;
int j=deq[l];
tt=s+st[i]-st[j];
tt*=sf[i];
dp[i]=min(dp[i],dp[j]+tt);
while(r-l>= && cal(deq[r-],deq[r])>cal(deq[r],i)) r--;
deq[++r]=i;
}
pl(dp[]);
return ;
}

POJ 1180 斜率优化DP(单调队列)的更多相关文章

  1. poj 1180 斜率优化dp

    这个题目要是顺着dp的话很难做,但是倒着推就很容易退出比较简单的关系式了. dp[i]=min(dp[u]+(sum[u-1]-sum[i-1]+s)*f[i]);dp[i]代表从i到结尾需要花费的代 ...

  2. 洛谷P3195 [HNOI2008] 玩具装箱 [DP,斜率优化,单调队列优化]

    题目传送门 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N ...

  3. BZOJ_1096_[ZJOI2007]_仓库建设_(斜率优化动态规划+单调队列+特殊的前缀和技巧)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1096 有\(n\)个工厂,给出第\(i\)个工厂的到1号工厂的距离\(x[i]\),货物数量\ ...

  4. BZOJ_1010_[HNOI2008]_玩具装箱toy_(斜率优化动态规划+单调队列)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 给出\(n\)和\(l\).有\(n\)个玩具,第\(i\)个玩具的长度是\(c[i]\ ...

  5. 洛谷P3628 [APIO2010]特别行动队(动态规划,斜率优化,单调队列)

    洛谷题目传送门 安利蒟蒻斜率优化总结 由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\). 设\(f ...

  6. 【BZOJ 4709】柠檬 斜率优化dp+单调栈

    题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中 ...

  7. 算法笔记--斜率优化dp

    斜率优化是单调队列优化的推广 用单调队列维护递增的斜率 参考:https://www.cnblogs.com/ka200812/archive/2012/08/03/2621345.html 以例1举 ...

  8. [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)

    DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...

  9. POJ 3017 DP + 单调队列 + 堆

    题意:给你一个长度为n的数列,你需要把这个数列分成几段,每段的和不超过m,问各段的最大值之和的最小值是多少? 思路:dp方程如下:设dp[i]为把前i个数分成合法的若干段最大值的最小值是多少.dp转移 ...

随机推荐

  1. .Net Core 应用框架。

    1.分布式系统框架  https://github.com/MassTransit/MassTransit 2.搜索引擎  https://github.com/XiLife-OSPC/Masuit. ...

  2. css随堂笔记(一)

    Css初体验第一天 1 css初识:css主要用于设置HTML页面中文本内容,图片的外形,以及版面的布局等外观显示样式 Css样式规范:h1{属性:值} 2 css的三总书写方式:1 行内样式  将样 ...

  3. Window10 Bug记录

    1.两台新电脑刚安装: 妹子的电脑JDK配置后,重启后环境变量配置丢失,cmd里能输出,但eclipse启动不了,重新配置后正常. 我的电脑JDK配置,重启后环境变量在,但好像没加载,cmd输出与ec ...

  4. Laravel 5.5 官方推荐 Nginx 配置学习

    Laravel 5.5 版本官方放出了 Nginx 服务器的配置,中文文档:服务器配置 Nginx server { listen 80; server_name example.com; root ...

  5. navicat for mysql注册码:NAVN-LNXG-XHHX-5NOO

    名.组织可以为空或任意填写. 摘自: navicat for mysql10.0.0.0注册码中“名”.“组织”...._百度知道

  6. graphql 数据增删改查分页及关联操作(三)

    说明: 接第二篇文章,代码也是在第二篇文章之上 本文只是针对mondodb来操作 一.添加相关的包 yarn add Mongoose 二.初始化Mongodb 修改server.ts 导入 impo ...

  7. C语言中头文件怎么写?(本文来源网络,由黑乌鸦进一步完善)

      c语言头文件怎么写?我一直有这样的疑问,但是也一直没去问问到底咋回事:所以今天一定要把它弄明白! 其实学会写头文件之后可以为我们省去不少事情,可以避免书写大量的重复代码.有利于整理思路.使代码脉络 ...

  8. Codeforces Round #404 (Div. 2) ABC

    A. Anton and Polyhedrons Anton's favourite geometric figures are regular polyhedrons. Note that ther ...

  9. [论文理解]关于ResNet的进一步理解

    [论文理解]关于ResNet的理解 这两天回忆起resnet,感觉残差结构还是不怎么理解(可能当时理解了,时间长了忘了吧),重新梳理一下两点,关于resnet结构的思考. 要解决什么问题 论文的一大贡 ...

  10. 2017.10.26 JavaWeb----第五章 JavaBean技术

    JavaWeb----第五章 JavaBean技术 (1)JavaBean技术 JavaBean技术是javaweb程序的重要组成部分,是一个可重复使用的软件组件,是用Java语言编写的.遵循一定的标 ...