POJ 1180 斜率优化DP(单调队列)
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 4347 | Accepted: 1992 |
Description
A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs, the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153.
You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost.
Input
Output
Sample Input
5
1
1 3
3 2
4 3
2 3
1 4
Sample Output
153
Source
dp[i]=min(dp[j]+(sunT[i]-sumT[j]+s)*sumF[i]) (1<=i<=n+1;i<j<=n+1)
我们考虑在计算dp[i]时,对于i < j < k来说, 如果保证决策k比决策j大的条件是:dp[j] + (S + sumT[i] - sumT[j]) * sumF[i] < dp[k] + (S + sumT[i] -sumT[k]) * sumF[i]
通过移项整理,可以化简为:(dp[j] - dp[k]) / (sumT[j] - sumT[k]) < sumF[i]
可知当我们计算dp[i]时,若(dp[j] - dp[k]) / (sumT[j] - sumT[k]) >=sumF[i]时我们可以舍弃j(决策K优于决策J);
因此我们可以用一个单调队列,对于元素i需要入对时,(i<j<k),我们如何维护呢,不妨设函数Q(j,k)=(dp[j] - dp[k]) / (sumT[j] - sumT[k]);
因为i需要入对,我们需要讨论的即是对于决策j,我们是否需要保留,(下面我们来讨论J需要舍弃的条件);
如果j需要舍弃,即对于决策i,j,i优于j;对于决策j,k,k优于j;故此我们有Q(i,j)<sumF[i],sumF[i]<=Q(j,k); 即推出 Qi,j)<Q(j,k);
综上:可以考虑维护一个斜率的队列来优化整个DP过程:
(1)假设i(马上要入队的元素)<j< k依次是队列尾部的元素,那么我们就要考虑Q(i,j)是否大于Q(j,k),如果Q(i,j) < Q(j,k),那么可以肯定j一定不会是决策点,可以从队列中将j去掉,依次向前推,直到找到一个队列元素少于2个或者Q(i,j)>= Q(j,k)的点才停止。
(2)假设k>j(k是头元素)是依次是队列头部的元素,如果g(j,k) < sumF[i]的话,那么对于i来说决策点j肯定优于决策点k,又由于sumF[i]是随着i减少而递增的,
所以当Q(j,k) < sumF[i]时,就一定有Q(j,k) < sumF[i-1],因此当前的决策点k不仅仅在考虑dp[i]时不会是最佳决策点,而且在后面的DP中也一定不会是最佳决策点,所以我们可以把k从队列 的头部删除,依次往后如此操作,直到队列元素小于2或者Q(j,k)>= sumF[i]。
代码:
#include<sstream>
#include<iomanip>
#include"cstdio"
#include"map"
#include"set"
#include"cmath"
#include"queue"
#include"vector"
#include"string"
#include"cstring"
#include"time.h"
#include"iostream"
#include"stdlib.h"
#include"algorithm"
#define db double
#define ll long long
#define vec vectr<ll>
#define mt vectr<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
//#define rep(i, x, y) for(int i=x;i<=y;i++)
#define rep(i, n) for(int i=0;i<n;i++)
const int N = 1e4+ ;
const int mod = 1e9 + ;
const int MOD = mod - 1;
const int inf = 0x3f3f3f3f;
const db PI = acos(-1.0);
const db eps = 1e-;
using namespace std;
ll dp[N];
int st[N],sf[N],deq[N];
int t[N],f[N];
int n,s;
db cal(int x,int y){
return db(dp[x]-dp[y])/db(st[x]-st[y]);
}
int main()
{
ci(n),ci(s);
for(int i=;i<=n;i++) ci(t[i]),ci(f[i]);
for(int i=n;i;i--) st[i]=st[i+]+t[i],sf[i]=sf[i+]+f[i];
int l=,r=;
dp[n]=(s+st[n])*sf[n];
deq[++r]=n;
for(int i=n-;i;i--)
{
while(r-l>= && cal(deq[l],deq[l+])<sf[i]) l++;
int tt=s+st[i];
tt*=sf[i];
dp[i]=tt;
int j=deq[l];
tt=s+st[i]-st[j];
tt*=sf[i];
dp[i]=min(dp[i],dp[j]+tt);
while(r-l>= && cal(deq[r-],deq[r])>cal(deq[r],i)) r--;
deq[++r]=i;
}
pl(dp[]);
return ;
}
POJ 1180 斜率优化DP(单调队列)的更多相关文章
- poj 1180 斜率优化dp
这个题目要是顺着dp的话很难做,但是倒着推就很容易退出比较简单的关系式了. dp[i]=min(dp[u]+(sum[u-1]-sum[i-1]+s)*f[i]);dp[i]代表从i到结尾需要花费的代 ...
- 洛谷P3195 [HNOI2008] 玩具装箱 [DP,斜率优化,单调队列优化]
题目传送门 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N ...
- BZOJ_1096_[ZJOI2007]_仓库建设_(斜率优化动态规划+单调队列+特殊的前缀和技巧)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1096 有\(n\)个工厂,给出第\(i\)个工厂的到1号工厂的距离\(x[i]\),货物数量\ ...
- BZOJ_1010_[HNOI2008]_玩具装箱toy_(斜率优化动态规划+单调队列)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 给出\(n\)和\(l\).有\(n\)个玩具,第\(i\)个玩具的长度是\(c[i]\ ...
- 洛谷P3628 [APIO2010]特别行动队(动态规划,斜率优化,单调队列)
洛谷题目传送门 安利蒟蒻斜率优化总结 由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\). 设\(f ...
- 【BZOJ 4709】柠檬 斜率优化dp+单调栈
题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中 ...
- 算法笔记--斜率优化dp
斜率优化是单调队列优化的推广 用单调队列维护递增的斜率 参考:https://www.cnblogs.com/ka200812/archive/2012/08/03/2621345.html 以例1举 ...
- [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)
DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...
- POJ 3017 DP + 单调队列 + 堆
题意:给你一个长度为n的数列,你需要把这个数列分成几段,每段的和不超过m,问各段的最大值之和的最小值是多少? 思路:dp方程如下:设dp[i]为把前i个数分成合法的若干段最大值的最小值是多少.dp转移 ...
随机推荐
- Design Pattern ->Factory Method
Layering & Contract Philosophy With additional indirection Factory Method The example code is as ...
- (转)ArcEngine读取数据(数据访问)
读取和访问数据是进行任何复杂的空间分析及空间可视化表达的前提,ArcGIS支持的数据格式比较丰富,下面就这些格式Shapefile.Coverage.Personal Geodatabase.Ente ...
- iphone 微信下浏览器中数字去除下划线
在开发iphone应用程序的时候,safari下手机号码默认是有下划线的,通过下面的方法就可以去掉: <meta name="format-detection" conten ...
- 使用uwsgi启动django项目
在 manage.py 同级目录 创建 uwsgi.ini 文件 ,内容如下: [uwsgi] # 对外提供 http 服务的端口 http = :18123 #the local unix sock ...
- selenium googleDrive
http://chromedriver.storage.googleapis.com/index.html?path=2.1/下载地址 把googledriver.exe 放到google浏览器下目录 ...
- 第四章 T-SQL编程
1.前言->此T-SQL编程是基于sql server开发环境->关键字:T-SQL编程:游标:视图和索引 2.T-SQL编程基础->标识符:常规标识符必须以汉字.字母.下划线_.@ ...
- Laravel Scheduling Package
Laravel 是在 App\Console\Kernel 类中的 schedule 方法去定义所有的调度任务. iBrand 产品作为一个电商类产品,本身业务需求非常庞大和复杂,全部定义在 sche ...
- April 24 2017 Week 17 Monday
Much effort, much prosperity. 越努力,越幸运. I have ever seen this sentence in many people's signature of ...
- node实现爬虫
node实现获取到豆瓣电影排行榜页面. 准备工作: 1.新建一个文件夹node 在当前文件夹中打开cmd 下载 npm install 初始化 npm init(注意一下:如果你的npm init没有 ...
- python 网址
https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/001431752945034e ...