Batch Scheduling
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4347   Accepted: 1992

Description

There is a sequence of N jobs to be processed on one machine. The jobs are numbered from 1 to N, so that the sequence is 1,2,..., N. The sequence of jobs must be partitioned into one or more batches, where each batch consists of consecutive jobs in the sequence. The processing starts at time 0. The batches are handled one by one starting from the first batch as follows. If a batch b contains jobs with smaller numbers than batch c, then batch b is handled before batch c. The jobs in a batch are processed successively on the machine. Immediately after all the jobs in a batch are processed, the machine outputs the results of all the jobs in that batch. The output time of a job j is the time when the batch containing j finishes.

A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs, the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153.

You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost.

Input

Your program reads from standard input. The first line contains the number of jobs N, 1 <= N <= 10000. The second line contains the batch setup time S which is an integer, 0 <= S <= 50. The following N lines contain information about the jobs 1, 2,..., N in that order as follows. First on each of these lines is an integer Ti, 1 <= Ti <= 100, the processing time of the job. Following that, there is an integer Fi, 1 <= Fi <= 100, the cost factor of the job.

Output

Your program writes to standard output. The output contains one line, which contains one integer: the minimum possible total cost.

Sample Input

5
1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

Source

题意:N个任务排成一个序列在一台机器上等待接连完成,这N个任务被分成若干批相邻任务。 第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的所用时间乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。(1 <= N <= 10000)
思路:sumT[i]表示从i到n的任务所需要的时间总和,sumF[i]表示从i到n的费用系数总和,dp[i]表示对于从i到n的任务安排的最优解:

dp[i]=min(dp[j]+(sunT[i]-sumT[j]+s)*sumF[i]) (1<=i<=n+1;i<j<=n+1)

我们考虑在计算dp[i]时,对于i < j < k来说, 如果保证决策k比决策j大的条件是:dp[j] + (S + sumT[i] - sumT[j]) * sumF[i] < dp[k] + (S + sumT[i] -sumT[k]) * sumF[i]

通过移项整理,可以化简为:(dp[j] - dp[k]) / (sumT[j] - sumT[k]) < sumF[i]

可知当我们计算dp[i]时,若(dp[j] - dp[k]) / (sumT[j] - sumT[k]) >=sumF[i]时我们可以舍弃j(决策K优于决策J);

因此我们可以用一个单调队列,对于元素i需要入对时,(i<j<k),我们如何维护呢,不妨设函数Q(j,k)=(dp[j] - dp[k]) / (sumT[j] - sumT[k]);

因为i需要入对,我们需要讨论的即是对于决策j,我们是否需要保留,(下面我们来讨论J需要舍弃的条件);

如果j需要舍弃,即对于决策i,j,i优于j;对于决策j,k,k优于j;故此我们有Q(i,j)<sumF[i],sumF[i]<=Q(j,k);  即推出 Qi,j)<Q(j,k);

综上:可以考虑维护一个斜率的队列来优化整个DP过程:

(1)假设i(马上要入队的元素)<j< k依次是队列尾部的元素,那么我们就要考虑Q(i,j)是否大于Q(j,k),如果Q(i,j) < Q(j,k),那么可以肯定j一定不会是决策点,可以从队列中将j去掉,依次向前推,直到找到一个队列元素少于2个或者Q(i,j)>= Q(j,k)的点才停止。

(2)假设k>j(k是头元素)是依次是队列头部的元素,如果g(j,k) < sumF[i]的话,那么对于i来说决策点j肯定优于决策点k,又由于sumF[i]是随着i减少而递增的,

所以当Q(j,k) < sumF[i]时,就一定有Q(j,k) < sumF[i-1],因此当前的决策点k不仅仅在考虑dp[i]时不会是最佳决策点,而且在后面的DP中也一定不会是最佳决策点,所以我们可以把k从队列 的头部删除,依次往后如此操作,直到队列元素小于2或者Q(j,k)>= sumF[i]。

代码:

 #include<sstream>
#include<iomanip>
#include"cstdio"
#include"map"
#include"set"
#include"cmath"
#include"queue"
#include"vector"
#include"string"
#include"cstring"
#include"time.h"
#include"iostream"
#include"stdlib.h"
#include"algorithm"
#define db double
#define ll long long
#define vec vectr<ll>
#define mt vectr<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
//#define rep(i, x, y) for(int i=x;i<=y;i++)
#define rep(i, n) for(int i=0;i<n;i++)
const int N = 1e4+ ;
const int mod = 1e9 + ;
const int MOD = mod - 1;
const int inf = 0x3f3f3f3f;
const db PI = acos(-1.0);
const db eps = 1e-;
using namespace std;
ll dp[N];
int st[N],sf[N],deq[N];
int t[N],f[N];
int n,s;
db cal(int x,int y){
return db(dp[x]-dp[y])/db(st[x]-st[y]);
}
int main()
{
ci(n),ci(s);
for(int i=;i<=n;i++) ci(t[i]),ci(f[i]);
for(int i=n;i;i--) st[i]=st[i+]+t[i],sf[i]=sf[i+]+f[i];
int l=,r=;
dp[n]=(s+st[n])*sf[n];
deq[++r]=n;
for(int i=n-;i;i--)
{
while(r-l>= && cal(deq[l],deq[l+])<sf[i]) l++;
int tt=s+st[i];
tt*=sf[i];
dp[i]=tt;
int j=deq[l];
tt=s+st[i]-st[j];
tt*=sf[i];
dp[i]=min(dp[i],dp[j]+tt);
while(r-l>= && cal(deq[r-],deq[r])>cal(deq[r],i)) r--;
deq[++r]=i;
}
pl(dp[]);
return ;
}

POJ 1180 斜率优化DP(单调队列)的更多相关文章

  1. poj 1180 斜率优化dp

    这个题目要是顺着dp的话很难做,但是倒着推就很容易退出比较简单的关系式了. dp[i]=min(dp[u]+(sum[u-1]-sum[i-1]+s)*f[i]);dp[i]代表从i到结尾需要花费的代 ...

  2. 洛谷P3195 [HNOI2008] 玩具装箱 [DP,斜率优化,单调队列优化]

    题目传送门 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N ...

  3. BZOJ_1096_[ZJOI2007]_仓库建设_(斜率优化动态规划+单调队列+特殊的前缀和技巧)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1096 有\(n\)个工厂,给出第\(i\)个工厂的到1号工厂的距离\(x[i]\),货物数量\ ...

  4. BZOJ_1010_[HNOI2008]_玩具装箱toy_(斜率优化动态规划+单调队列)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 给出\(n\)和\(l\).有\(n\)个玩具,第\(i\)个玩具的长度是\(c[i]\ ...

  5. 洛谷P3628 [APIO2010]特别行动队(动态规划,斜率优化,单调队列)

    洛谷题目传送门 安利蒟蒻斜率优化总结 由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\). 设\(f ...

  6. 【BZOJ 4709】柠檬 斜率优化dp+单调栈

    题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中 ...

  7. 算法笔记--斜率优化dp

    斜率优化是单调队列优化的推广 用单调队列维护递增的斜率 参考:https://www.cnblogs.com/ka200812/archive/2012/08/03/2621345.html 以例1举 ...

  8. [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)

    DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...

  9. POJ 3017 DP + 单调队列 + 堆

    题意:给你一个长度为n的数列,你需要把这个数列分成几段,每段的和不超过m,问各段的最大值之和的最小值是多少? 思路:dp方程如下:设dp[i]为把前i个数分成合法的若干段最大值的最小值是多少.dp转移 ...

随机推荐

  1. java之Socket传递图片

    客户端: package client; import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import ...

  2. Ajax使用 初始化数据 + mvc

    2017-3-16 mvc+jquery+easyUI做项目 <input type="text" id="txtSTQty" name="tx ...

  3. 双网卡(一外一内)都启用,将内网卡默认网关去除即可正常连接Internet

  4. Objectbox Box的getAll() 函数返回emptylist() 未判断导致崩溃

    最近使用了Objectbox作为新项目的数据库后台,Greendao开发团队新力作,但是Objectbox算是比较新的一个东西,现在资料也不多. 今天跟大家分享一个关于Box类的getAll()函数的 ...

  5. Altium_Designer如何快速寻找元件和封装

    初学Altium碰到最多的问题就是:不知道元件放在哪个库中.这里我收集了DXP2004常用元件库下常见的元件.使用时,只需在libary中选择相应元件库后,输入英文的前几个字母就可看到相应的元件了.通 ...

  6. 1929. Teddybears are not for Everyone (Timus) (combination+reading questions)

    http://acm.timus.ru/problem.aspx?space=1&num=1929 combination problems. 排列组合问题. According to the ...

  7. python_1_变量的使用

    print("hello word") name="Qi Zhiguang" print("My name is",name) name2= ...

  8. Redis 命令学习

    每天不学习点新的东西,感觉就有点会被社会淘汰掉了.也许现在学习的知识会很快忘记,下次学习用到这个知识点的时候,再回来翻记录的笔记,我想这样会比从头再学,效率会高点吧. 闲话不多聊,回归正题.今天学习r ...

  9. P3740 贴海报

    P3740 贴海报 很显然,这个题是让我们维护一个区间的信息 可以考虑线段树.可是这个题,正向思维可能并不可做. 所以我们考虑逆向思维. 打个比方,你是一名保洁人员.面对已经粘在墙上的,大大小小的广告 ...

  10. (转)ActionContext和ServletActionContext

    前面已经了解到ActionContext是Action执行时的上下文,里面存放着Action在执行时需要用到的对象,我们也称之为广义值栈. Struts2在每次执行Action之前都会创建新的Acti ...