bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳
题目大意:
二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大
题解:
很容易发现这四个点一定在凸包上
所以我们枚举一条边再旋转卡壳确定另外的两个点即可
旋(xuan2)转(zhuan4)卡(qia3)壳(ke2)
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline int cat_max(const int &a,const int &b){return a>b ? a:b;}
inline int cat_min(const int &a,const int &b){return a<b ? a:b;}
const int maxn = 2048;
const double eps = 1e-9;
inline int dcmp(double x){
if(x < eps && x > -eps) return 0;
return x > 0 ? 1 : -1;
}
struct Point{
double x,y;
Point(double a = .0,double b = .0){
x=a;y=b;
}
};
typedef Point Vector;
Vector operator + (const Vector &a,const Vector &b){
return Vector(a.x + b.x,a.y + b.y);
}
Vector operator - (const Vector &a,const Vector &b){
return Vector(a.x - b.x,a.y - b.y);
}
double operator * (const Vector &a,const Vector &b){
return a.x*b.x + a.y*b.y;
}
double operator ^ (const Vector &a,const Vector &b){
return a.x*b.y - a.y*b.x;
}
double trigonArea(const Point &a,const Point &b,const Point &c){
return abs((b - a)^(c - a))/2.0;
}
inline bool cmp(const Point &a,const Point &b){
return dcmp(a.x - b.x) == 0 ? a.y < b.y : a.x < b.x;
}
Point p[maxn],ch[maxn];
int m = 0,n;
void convex(){
sort(p+1,p+n+1,cmp);m = 0;
for(int i=1;i<=n;++i){
while(m > 1 && dcmp((ch[m] - ch[m-1])^(p[i] - ch[m])) <= 0) -- m;
ch[++m] = p[i];
}int k = m;
//printf("%d\n",k);
for(int i=n-1;i>=1;--i){
while(m > k && dcmp((ch[m] - ch[m-1])^(p[i] - ch[m])) <= 0) -- m;
ch[++m] = p[i];
}if(n > 1) -- m;
//printf("%d\n",m);
swap(n,m);swap(p,ch);
}
#define nx(x) ((x) % n + 1)
double spinClipShell(){
double ret = .0;p[n+1] = p[1];
for(int i=1;i<=n;++i){
int x = nx(i);
int y = nx(i+2);
for(int j=i+2;j<=n;++j){
while((nx(x) != j) && dcmp(trigonArea(p[x],p[i],p[j]) - trigonArea(p[x+1],p[i],p[j])) < 0) x = nx(x);
while((nx(y) != i) && dcmp(trigonArea(p[y],p[i],p[j]) - trigonArea(p[y+1],p[i],p[j])) < 0) y = nx(y);
ret = max(ret,trigonArea(p[x],p[i],p[j]) + trigonArea(p[y],p[i],p[j]));
}
}return ret;
}
int main(){
read(n);
for(int i=1;i<=n;++i) scanf("%lf%lf",&p[i].x,&p[i].y);
convex();printf("%.3lf\n",spinClipShell());
getchar();getchar();
return 0;
}
bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳的更多相关文章
- bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2277 Solved: 853[Submit][Stat ...
- [BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 3669 Solved: 1451[Submit][Sta ...
- bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积
在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. 题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积 /* ...
- luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳
LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...
- BZOJ 1069: [SCOI2007]最大土地面积(旋转卡壳)
题目链接~ 1069: [SCOI2007]最大土地面积 思路很简单,极角排序求完凸包后,在凸包上枚举对角线,然后两边分别来两个点旋转卡壳一下,搞定! 不过计算几何的题目就是这样,程序中间的处理还是比 ...
- BZOJ 1069: [SCOI2007]最大土地面积 [旋转卡壳]
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 2978 Solved: 1173[Submit][Sta ...
- bzoj 1069 [SCOI2007]最大土地面积——旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1069 发现 n 可以 n^2 .所以枚举对角线,分开的两部分三角形就可以旋转卡壳了. 注意坐 ...
- 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳
因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...
- ●BZOJ 1069 [SCOI2007]最大土地面积
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1069 题解: 计算几何,凸包,旋转卡壳 其实和这个题差不多,POJ 2079 Triangl ...
随机推荐
- swift中的?和!理解
本文转载至 http://www.cnblogs.com/dugulong/p/3770367.html 首先贴cocoachina上某位大大的帖子: Swift语言使用var定义变量,但和别 ...
- 解决不同浏览器创建不同 XMLHTTP 对象的问题
function GetXmlHttpObject() { var xmlHttp=null; try { // Firefox, Opera 8.0+, Safari xmlHttp=new XML ...
- 安装部署服务器和javaweb项目
[说明]总算告一段落了,服务器啊服务器,你可是把我折磨的够呛,不过现在的状态我已经很满足了. [说明]下面的图片是我这两天一直在搞的,内容不能说是重复,只能说是不停地修改修改,出错出错. 1) 虚拟主 ...
- [笔记]我的Linux入门之路 - 02.***-Qt5配置
作为一个学习中的程序员,查wiki等,***肯定是刚需.况且没有它很多东西都下不下来.我在windows环境下使用的是shadowsocks,那么在linux下也使用它. 一.SS版本 SS版本众多, ...
- nginx + uWSGI 为 django 提供高并发
django 的并发能力真的是令人担忧,这里就使用 nginx + uwsgi 提供高并发 nginx 的并发能力超高,单台并发能力过万(这个也不是绝对),在纯静态的 web 服务中更是突出其优越的地 ...
- statu 设置
DATA: itab TYPE TABLE OF sy-ucomm. APPEND 'DELE' TO itab. APPEND 'PICK' TO itab. SET PF-STATUS 'STA3 ...
- 使用django开发一个博客
环境: MAC 10.10.5 Yosemite Python 3.73 Django 代码托管 github
- STM32 HAL库 UART使用printf
// 添加这个函数 int fputc(int ch,FILE *f) { uint8_t temp[]={ch}; HAL_UART_Transmit(&UartHandle,temp,,) ...
- zookeeper学习与实战(二)集群部署
上一篇介绍了单机版zookeeper安装,这种情况一般用于开发测试.如果是生产环境建议用分布式集群部署,防止单点故障,增加zookeeper服务的高可用. [环境介绍] 三台机器:192. ...
- 20145210姚思羽《网络对抗》——shellcode注入& Return-to-libc攻击深入
20145210姚思羽<网络对抗>shellcode注入&Return-to-libc攻击深入 shellcode基础知识 Shellcode是一段代码,作为数据发送给受攻击服务器 ...