原题

给定N个整数组成的数列(N<=35),从中选出一个子集,使得这个子集的所有元素的值的和的绝对值最小,如果有多组数据满足的话,选择子集元素最少的那个。


n<=35,所以双向dfs的O(2^(n/2))可以直接解决问题。因为会爆空间,所以枚举前一半的二进制状态来完成dfs,并用map记录每个状态所用的个数,然后枚举后一半的状态在map中找第一个大于等于他的和第一个小于他的,比较这两个答案。

注:long long 没有自带的abs,并且在define里要多打括号,因为优先度……

#include<cstdio>
#include<map>
#define abs(x) ((x)>0?(x):-(x))
typedef long long ll;
using namespace std;
ll n,a[40],ans,sum;
int cnt;
map <ll,int> mp;
map <ll,int> :: iterator qwq; ll read()
{
ll ans=0,fu=1;
char j=getchar();
for (;(j<'0' || j>'9') && j!='-';j=getchar()) ;
if (j=='-') j=getchar(),fu=-1;
for (;j>='0' && j<='9';j=getchar()) ans*=10,ans+=j-'0';
return ans*fu;
} int main()
{
while (~scanf("%lld",&n) && n)
{
mp.clear();
ans=0;
cnt=0;
for (int i=1;i<=n;i++)
a[i]=read();
ans=abs(a[1]);
cnt=1;
for (int i=1,j,now,count;i<(1<<(n/2));i++)
{
sum=0;
j=i;
now=0;
count=0;
while (j)
{
if (j&1)
sum+=a[now+1],count++;
j>>=1;
now++;
}
if (abs(sum)<ans)
{
ans=abs(sum);
cnt=count;
}
else if (abs(sum)==ans) cnt=min(cnt,count);
if (mp[sum])
mp[sum]=min(mp[sum],count);
else
mp[sum]=count;
}
for (int i=1,j,now,count;i<(1<<(n-n/2));i++)
{
j=i;
sum=0;
count=0;
now=0;
while (j)
{
if (j&1)
sum+=a[now+n/2+1],count++;
j>>=1;
now++;
}
if (abs(sum)<ans)
{
ans=abs(sum);
cnt=count;
}
else if (abs(sum)==ans) cnt=min(cnt,count);
qwq=mp.lower_bound(-sum);
ll nw;
if (qwq!=mp.end())
{
nw=sum+qwq->first;
nw=abs(nw);
if (nw<ans)
{
ans=nw;
cnt=qwq->second+count;
}
else if (nw==ans) cnt=min(cnt,qwq->second+count);
}
if (qwq!=mp.begin())
{
qwq--;
nw=sum+qwq->first;
nw=abs(nw);
if (nw<ans)
{
ans=nw;
cnt=qwq->second+count;
}
else if (nw==ans) cnt=min(cnt,qwq->second+count);
}
}
printf("%lld %d\n",ans,cnt);
}
return 0;
}

[poj] 3977 Subset || 折半搜索MITM的更多相关文章

  1. POJ 3977 Subset | 折半搜索

    题目: 给出一个整数集合,求出非空子集中元素和绝对值最小是多少(元素个数尽量少) 题解: 分成两半 爆搜每一半,用map维护前一半的值 每搜出后一半的一个值就去map里找和他和绝对值最小的更新答案 # ...

  2. POJ 3977 - subset - 折半枚举

    2017-08-01 21:45:19 writer:pprp 题目: • POJ 3977• 给定n个数,求一个子集(非空)• 使得子集内元素和的绝对值最小• n ≤ 35 AC代码如下:(难点:枚 ...

  3. POJ 3977 Subset(折半枚举+二分)

    SubsetTime Limit: 30000MS        Memory Limit: 65536KTotal Submissions: 6754        Accepted: 1277 D ...

  4. poj 3977 Subset(折半枚举+二进制枚举+二分)

    Subset Time Limit: 30000MS   Memory Limit: 65536K Total Submissions: 5721   Accepted: 1083 Descripti ...

  5. 【折半枚举+二分】POJ 3977 Subset

    题目内容 Vjudge链接 给你\(n\)个数,求出这\(n\)个数的一个非空子集,使子集中的数加和的绝对值最小,在此基础上子集中元素的个数应最小. 输入格式 输入含多组数据,每组数据有两行,第一行是 ...

  6. POJ - 3977 Subset(二分+折半枚举)

    题意:有一个N(N <= 35)个数的集合,每个数的绝对值小于等于1015,找一个非空子集,使该子集中所有元素的和的绝对值最小,若有多个,则输出个数最小的那个. 分析: 1.将集合中的元素分成两 ...

  7. POJ 3977 Subset

    Subset Time Limit: 30000MS   Memory Limit: 65536K Total Submissions: 3161   Accepted: 564 Descriptio ...

  8. POJ3977:Subset——题解(三分+折半搜索)

    http://poj.org/problem?id=3977 题目大意:有一堆数,取出一些数,记他们和的绝对值为w,取的个数为n,求在w最小的情况下,n最小,并输出w,n. ————————————— ...

  9. bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)

    2679: [Usaco2012 Open]Balanced Cow Subsets Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 462  Solv ...

随机推荐

  1. spring-bean(注解方式-管理及依赖注入)

    Bean管理(注解方式) 1.添加注解的依赖包:Spring-aop.jar 2.配置spring的XML文件的引入(查官方源码) 3.开启注解的扫描 <context:component-sc ...

  2. 在程序开发中,++i 与 i++的区别

    在不参与运算的情况下,i++和++i都是在变量的基础加1 ◆在参与运算的情况下 Var i=123; Var j=i++;  先将i的值123赋值给j,之后再自增 j的值为123  i 的值为124 ...

  3. java-访问控制修饰符

    访问权限 public    任何情况都可以访问 默认包 本包范围内可以访问到 protect       同一个包里的所有类所可以访问:所有子类(子类可以不和父类在同一个包)都可以访问 privat ...

  4. Python代码结构——顺序、分支、循环

    ## 顺序结构 - 按照从上到下的顺序,一条语句一条语句的执行,是最基本的结构 ## 分支结构 if condition: statement statement ... elif condition ...

  5. 【笔记】objdump命令的使用

    ---恢复内容开始--- objdump命令是Linux下的反汇编目标文件或者可执行文件的命令,它还有其他作用,下面以ELF格式可执行文件test为例详细介绍: objdump -f test 显示t ...

  6. Fruits【水果】

    Fruits Many of us love July because it's the month when nature's berries and stone fruits are in abu ...

  7. NOI P1896 互不侵犯 状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...

  8. POJ 2891 中国剩余定理(不互素)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 17877 ...

  9. Android面试收集录7 AsyncTask详解

    1.Android中的线程 在操作系统中,线程是操作系统调度的最小单元,同时线程又是一种受限的系统资源,即线程不可能无限制地产生, 并且 **线程的创建和销毁都会有相应的开销.**当系统中存在大量的线 ...

  10. FCS校验 C语言简单实现

    static uint8 calcFCS(uint8 *pBuf, uint8 len){  uint8 rtrn = 0;  while (len--)  {    rtrn ^= *pBuf++; ...