康拓展开/逆展开 模板

#include<algorithm>
#include<iostream>
#include<cstdio>
#define int long long using namespace std; inline int rd(){
int ret=0,f=1;char c;
while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
while(isdigit(c))ret=ret*10+c-'0',c=getchar();
return ret*f;
}
#define space() putchar(' ')
#define nextline() putchar('\n')
void pot(int x){if(!x)return;pot(x/10);putchar('0'+x%10);}
void out(int x){if(!x)putchar('0');if(x<0)putchar('-'),x=-x;pot(x);} const int MAXN = 24; int n,m; int fac[MAXN],a[MAXN]; int vis[MAXN],tim;
void ct(int x){
x--;
++tim;
for(int i=1;i<=n;i++){
int cur=x/fac[n-i],j;
for(j=1;j<=n;j++){
if(vis[j]==tim)continue;
if(cur==0) break;
cur--;
}
vis[j]=tim;
out(j);space();
x%=fac[n-i];
}
nextline();
} void rct(){
int ans=1;
for(int i=1;i<=n;i++){
int tmp=0;
for(int j=i+1;j<=n;j++){
if(a[j]<a[i])tmp++;
}
ans+=fac[n-i]*tmp;
}
out(ans);nextline();
} signed main(){
n=rd();m=rd();
fac[0]=1;
for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i;
char s[MAXN];
int x;
for(int i=1;i<=m;i++){
scanf("%s",s);
if(s[0]=='P'){
x=rd();
ct(x);
}else{
for(int j=1;j<=n;j++)a[j]=rd();
rct();
}
}
return 0;
}

[BZOJ] 3301: [USACO2011 Feb] Cow Line的更多相关文章

  1. 3301: [USACO2011 Feb] Cow Line

    3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 82  Solved: 49[Submit ...

  2. 【BZOJ】3301: [USACO2011 Feb] Cow Line(康托展开)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3301 其实这一题很早就a过了,但是那时候看题解写完也是似懂非懂的.... 听zyf神犇说是康托展开, ...

  3. BZOJ3301: [USACO2011 Feb] Cow Line

    3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 67  Solved: 39[Submit ...

  4. [USACO2011 Feb] Cow Line

    原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=3301 康拓展开和逆展开的模板题. #include<iostream> #in ...

  5. BZOJ 1631: [Usaco2007 Feb]Cow Party( 最短路 )

    这道题和蔡大神出的今年STOI初中组的第二题几乎一模一样... 先跑一遍最短路 , 再把所有边反向 , 再跑一遍 , 所有点两次相加的最大值即为answer --------------------- ...

  6. BZOJ 1631: [Usaco2007 Feb]Cow Party

    题目 1631: [Usaco2007 Feb]Cow Party Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 491  Solved: 362[Sub ...

  7. BZOJ 3403: [Usaco2009 Open]Cow Line 直线上的牛( deque )

    直接用STL的的deque就好了... ---------------------------------------------------------------------- #include& ...

  8. BZOJ 3446: [Usaco2014 Feb]Cow Decathlon( 状压dp )

    水状压dp. dp(x, s) = max{ dp( x - 1, s - {h} ) } + 奖励(假如拿到的) (h∈s). 时间复杂度O(n * 2^n) ------------------- ...

  9. BZOJ 2274 [Usaco2011 Feb]Generic Cow Protests

    [题解] 很容易可以写出朴素DP方程f[i]=sigma f[j] (sum[i]>=sum[j],1<=j<=i).  于是我们用权值树状数组优化即可. #include<c ...

随机推荐

  1. spring动态线程池(实质还是用了java的线程池)

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  2. hive_hiveserver2 hive-site.xml config and start

    hive-site.xml # vi hive-site.xml <configuration> <property> <name>javax.jdo.option ...

  3. python 发布

    使用distutils.core.setup函数发布程序 将要发布的包放到mypub的目录下 在mypub目录下创建一个setup.py文件 setup.py文件的设置 from distutils. ...

  4. Java排序算法(三)

    Java排序算法(三) 三.Java排序算法总结 从这三组时间复杂度对比中,可以看出,堆排序和归并排序是不管在什么情况下发挥稳定的,快速排序好的时候表现如天才,坏情况下比较差强人意,甚至在等待排序个数 ...

  5. jQuery判断动画是否执行完成

    JS $(function() { $("#myDiv").bind("click", function() { if ($(this).css("t ...

  6. HttpClient向后端的WebAPI工程发送HTTP的Post请求时,返回超过了最大请求长度的异常的解决方法

    文章中的内容以及解决思路参考(转载)的 http://www.jb51.net/article/88698.htm 在WPF项目中通过HttpClient向后端的WebAPI工程发送HTTP的Post ...

  7. 【踩坑】遇到 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found) 报错

    今天在重做 iblog 客户端时,测试接口情况,发现了 org.apache.ibatis.binding.BindingException: Invalid bound statement (not ...

  8. C++中构造函数的写法

    class Circle { public: Circle(float r); private: float radius; }; Circle::Circle(float r) { radius = ...

  9. SpringBoot JUnit4的断言和注解

    Junit4的断言常用方法: assertArrayEquals( new Object[]{ studentService.likeName("小明2").size() > ...

  10. 判断一个点是否在多边形区域内--C算法

    /*函数的输入:(1)当前点的坐标p(2)区域顶点数组pt[]:(3)顶点数nCount 输出: 在区域内返回TRUE,否则返回FALSE.  Point类型是一个结构: struct Point { ...