题目

【BZOJ4361】isn

做法

\(dp_{i,j}\)表示以\(i\)结尾\(j\)长度,树状数组\(tree_{i,j}\)表长度为\(i\),以\(<=j\)结尾的个数,显然\(dp_{i,j}=\sum\limits_{k=1}^{pos[i]}tree[j-1][k]\)

从而\(O(n^2logn)\)得到每个长度不下降子序列个数

\(ans=\sum\limits_{i=1}^n(g[i]\times (n-i)!-g[i+1]\times (n-i-1)!\times (i+1))\)

怎么理解这句话呢?\(g[i]\)表长度\(i\)的个数,我们确定了长度,自然能得到这个长度的方案数,然而有些是不合法的,因为之前已经得到不下降了不能再删

那就减去\(i+1\)的个数到\(i\)的转移

My complete code

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<string>
using namespace std;
typedef long long LL;
const LL maxn=3000;
const LL p=1e9+7;
inline LL Read(){
LL x(0),f=1; char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
LL n,cnt,ans;
LL tree[maxn][maxn],a[maxn],b[maxn],g[maxn],dp[maxn][maxn],pos[maxn],jc[maxn];
inline LL Lowbit(LL x){
return x&(-x);
}
inline LL Query(LL len,LL x){
LL ret(0);
for(;x;x-=Lowbit(x))
ret=(ret+tree[len][x]);
return ret;
}
inline void Add(LL len,LL x,LL val){
for(;x<=n;x+=Lowbit(x))
tree[len][x]=(tree[len][x]+val)%p;
}
int main(){
n=Read();
for(LL i=1;i<=n;++i)
a[i]=b[i]=Read();
sort(b+1,b+1+n);
cnt=unique(b+1,b+1+n)-b-1; Add(0,1,1);
for(LL i=1;i<=n;++i){
pos[i]=lower_bound(b+1,b+1+cnt,a[i])-b;
for(LL j=i;j>=1;--j){
dp[i][j]=Query(j-1,pos[i])%p;
Add(j,pos[i],dp[i][j]);
}
} for(LL i=1;i<=n;++i)
for(LL j=1;j<=n;++j)
g[i]=(g[i]+dp[j][i])%p;
jc[1]=1;
for(LL i=2;i<=n;++i)
jc[i]=jc[i-1]*i%p;
for(LL i=1;i<=n;++i)
ans=(ans+g[i]*jc[n-i]%p-g[i+1]*jc[n-i-1]%p*(i+1)%p+p)%p;
printf("%lld\n",ans);
return 0;
}

【BZOJ4361】isn的更多相关文章

  1. 【BZOJ4361】isn 动态规划+树状数组+容斥

    [BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...

  2. 【BZOJ4361】isn(动态规划,容斥)

    [BZOJ4361]isn(动态规划,容斥) 题面 BZOJ 题解 首先我们如果确定了一个不降序列,假设它的长度为\(i\), 那么可行的方案数为\(i*(n-i)!\),但是这样有一些非法的情况,即 ...

  3. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  4. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

  5. 【原】FMDB源码阅读(三)

    [原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...

  6. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

  7. 【调侃】IOC前世今生

    前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...

  8. Python高手之路【三】python基础之函数

    基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...

  9. Python高手之路【一】初识python

    Python简介 1:Python的创始人 Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种解释型.面向对象.动态数据类型的高级程序设计语言,由荷兰人Guido ...

随机推荐

  1. linux 进程的 5 大段

    BSS段:BSS段(bss segment)通常是指用来存放程序中数据段:数据段(data segment)通常是指用来存放程序中已初始化的全局变量的一块内存区域.数据段属于静态内存分配. 数据段:数 ...

  2. android监听事件的方式

    1.匿名内部类 bt.setOnClickListener(new OnClickListener(){ @Overridepublic void onClick(View view){//Here ...

  3. iOS GCD不同场景的使用比較

    /**  *  async -- 并发队列  * 会创建线程.一般同一时候开多条  * 并发运行任务  */ <span style="font-size:14px;"> ...

  4. hdu 1159(Common Subsequence)简单dp,求出最大的公共的字符数

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. webview长按保存图片

    private String imgurl = ""; /***     * 功能:长按图片保存到手机     */    @Override    public void onC ...

  6. 机器学习11—Apriori学习笔记

    votesmart下载  https://pypi.python.org/pypi/py-votesmart test11.py #-*- coding:utf-8 import sys sys.pa ...

  7. 第二篇: Ansible 安装

    一.配置epel源 wget –O /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-6.repo 二.安装ansible  ...

  8. 使用 cacti 批量监控服务器以及其 PHP 运作环境配置

    http://www.ibm.com/developerworks/cn/linux/l-cn-cacti/ http://www.360doc.com/content/12/0711/22/1465 ...

  9. 图像处理之基础---2个YUV视频 拼接技术

    /************************************************* * 主要功能:两路 YUV4:2:0拼接一路左右半宽格式YUV视频 参考资料:http://www ...

  10. cordova ios升级插件

    org.ssgroup.sope.cordova.upgrade 支持强制升级与选择升级 插件已经开源在https://github.com/shenshouer/org.ssgroup.sope.c ...