斐波那契数列

思路:

  矩阵快速幂;

来,上代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; #define mod 1000000007 struct MatrixType {
long long ai[][]; void mem()
{
for(int i=;i<;i++)
{
for(int j=;j<;j++) ai[i][j]=;
}
}
}; long long n; MatrixType mul(MatrixType a,MatrixType b)
{
MatrixType res;
res.mem();
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
for(int v=;v<=;v++) res.ai[i][j]=(res.ai[i][j]+(a.ai[i][v]*b.ai[v][j])%mod)%mod;
}
}
return res;
} long long poww(long long mi)
{
MatrixType pos,mii;
pos.mem(),mii.mem();
pos.ai[][]=,pos.ai[][]=;
pos.ai[][]=,pos.ai[][]=;
mii.ai[][]=,mii.ai[][]=;
mii.ai[][]=,mii.ai[][]=;
while(mi>)
{
if(mi&) pos=mul(pos,mii);
mi=mi>>,mii=mul(mii,mii);
}
return pos.ai[][];
} int main()
{
scanf("%lld",&n);
cout<<poww(--n)%mod;
return ;
}

AC日记——斐波那契数列 洛谷 P1962的更多相关文章

  1. AC日记——斐波那契数列(升级版) 洛谷 P2626

    斐波那契数列(升级版) 思路: 水题: 代码: #include <cmath> #include <cstdio> #include <cstring> #inc ...

  2. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  3. 洛谷P1349 广义斐波那契数列(矩阵快速幂)

    P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...

  4. 洛谷—— P1962 斐波那契数列

    https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...

  5. 斐波那契数列的通项公式x+洛谷P2626x

    #include<cstdio> #include<iostream> #include<cmath> using namespace std; int main( ...

  6. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  7. 洛谷——P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  8. 洛谷——P2626 斐波那契数列(升级版)矩阵

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...

  9. 洛谷 P2626 斐波那契数列(升级版)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...

随机推荐

  1. CFileDialog OFN_NOCHANGEDIR

    问题:CFileDialog 调用后变成了当前工作路径,变成了CFileDialog所选择的路径. 解决:在CFileDialog的dwFlags 设置标志OFN_NOCHANGEDIR就可以了,不会 ...

  2. error LNK2001: unresolved external symbol @__security_check_cookie

    Q:VS2005编译的静态库, 在vc++6.0中连接出现错误 error LNK2001: unresolved external symbol @__security_check_cookie@l ...

  3. Json 转换 1 转成 true 0 转成false

  4. node express 登录拦截器 request接口请求

    1.拦截器 拦截器可以根据需要 做权限拦截 登录只是权限的一种, 思路是req.session.user判断用户session是否存在,是否是需要拦截的地址, 如果是就跳转登录页,或其他页, 如果非需 ...

  5. python负数除法与模运算

    1.负数除法: >>> print 45/76>>> print -45/7-7 >>> print 45/-7-7 >>> p ...

  6. (转\整)UE4游戏优化 多人大地型游戏的优化(一)游戏线程的优化

    施主分享随缘,评论随心,@author:白袍小道 小道暗语: 1.因为小道这里博客目录没自己整,暂时就用随笔目录结构,所以二级目录那啥就忽略了.标题格式大致都是(原or转) 二级目录 (标题) 2.因 ...

  7. [译]在python中如何有效的比较两个无序的列表是否包含完全同样的元素(不是set)?

    原文来源: https://stackoverflow.com/questions/7828867/how-to-efficiently-compare-two-unordered-lists-not ...

  8. [转]Shell dev-null详解

    转自: https://blog.csdn.net/wenwenxiong/article/details/46882733 1,可以将/dev/null看作"黑洞". 它非常等价 ...

  9. B-Tree索引和Hash索引的区别

    Hash 索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-T ...

  10. kindeditor编辑器获取不到修改后的新文本

    在编辑文章的功能中,文章内容使用了kindeditor编辑器进行处理,但是修改文本后保存时发现获取到的内容还是修改前的文本内容. 引用编辑器的标签: <textarea id="txt ...