idr在linux内核中指的就是整数ID管理机制,从本质上来说,这就是一种将整数ID号和特定指针关联在一起的机制。这个机制最早是在2003年2月加入内核的,当时是作为POSIX定时器的一个补丁。现在,在内核的很多地方都可以找到idr的身影。
idr机制适用在那些需要把某个整数和特定指针关联在一起的地方。举个例子,在I2C总线中,每个设备都有自己的地址,要想在总线上找到特定的设备,就必须要先发送该设备的地址。如果我们的PC是一个I2C总线上的主节点,那么要访问总线上的其他设备,首先要知道他们的ID号,同时要在pc的驱动程序中建立一个用于描述该设备的结构体。
此时,问题来了,我们怎么才能将这个设备的ID号和他的设备结构体联系起来呢?最简单的方法当然是通过数组进行索引,但如果ID号的范围很大(比如32位的ID号),则用数组索引显然不可能;第二种方法是用链表,但如果网络中实际存在的设备较多,则链表的查询效率会很低。遇到这种清况,我们就可以采用idr机制,该机制内部采用radix树实现,可以很方便地将整数和指针关联起来,并且具有很高的搜索效率。http://hovertree.com/menu/linux/
(1)获得idr
要在代码中使用idr,首先要包括<linux/idr.h>。接下来,我们要在代码中分配idr结构体,并初始化:
    void idr_init(struct idr *idp);
其中idr定义如下:

struct idr {
struct idr_layer *top;
struct idr_layer *id_free;
int layers;
int id_free_cnt;
spinlock_t lock;
};
/* idr是idr机制的核心结构体 何问起 hovertree.com */
(2)为idr分配内存
int idr_pre_get(struct idr *idp, unsigned int gfp_mask);
每次通过idr获得ID号之前,需要先分配内存。
返回0表示错误,非零值代表正常
(3)分配ID号并将ID号和指针关联
int idr_get_new(struct idr *idp, void *ptr, int *id);
int idr_get_new_above(struct idr *idp, void *ptr, int start_id, int *id);
idp: 之前通过idr_init初始化的idr指针
id:  由内核自动分配的ID号
ptr: 和ID号相关联的指针
start_id: 起始ID号。内核在分配ID号时,会从start_id开始。如果为I2C节点分配ID号,可以将设备地址作为start_id
函数调用正常返回0,如果没有ID可以分配,则返回-ENOSPC
在实际中,上述函数常常采用如下方式使用:

again:
if (idr_pre_get(&my_idr, GFP_KERNEL) == ) {
/* No memory, give up entirely */
}
spin_lock(&my_lock);
result = idr_get_new(&my_idr, &target, &id);
if (result == -EAGAIN) {
sigh();
spin_unlock(&my_lock);
goto again;
}/* 何问起 hovertree.com */
(4)通过ID号搜索对应的指针
void *idr_find(struct idr *idp, int id);
返回值是和给定id相关联的指针,如果没有,则返回NULL
(5)删除ID
要删除一个ID,使用:
void idr_remove(struct idr *idp, int id);
通过上面这些方法,内核代码可以为子设备,inode生成对应的ID号。这些函数都定义在<linux-2.6.xx/lib/idr.c>中
下面,我们通过分析I2C协议的核心代码,来看一看idr机制的实际应用:
<linux-2.6.23/drivers/i2c/i2c-core.c>
...
<linux/idr.h>   /* idr头文件 */
...
static DEFINE_IDR(i2c_adapter_idr); /* 声明idr */
...
/* 
  采用动态总线号声明并注册一个i2c适配器(adapter),可睡眠
  针对总线号可动态指定的设备,如基于USB的i2c设备或pci卡
 */
int i2c_add_adapter(struct i2c_adapter *adapter)
{
        int     id, res = 0;
retry:
        if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
                return -ENOMEM;
        mutex_lock(&core_lists);
        /* __i2c_first_dynamic_bus_num是当前系统允许的动态总线号的最大值 */
        res = idr_get_new_above(&i2c_adapter_idr, adapter,                 __i2c_first_dynamic_bus_num, &id);
        mutex_unlock(&core_lists);
        if (res < 0) {
                if (res == -EAGAIN)
                        goto retry;
                return res;
        }
        adapter->nr = id;
        return i2c_register_adapter(adapter);
}
EXPORT_SYMBOL(i2c_add_adapter);
/* 
  采用静态总线号声明并注册一个i2c适配器(adapter)
 */
int i2c_add_numbered_adapter(struct i2c_adapter *adap)
{
        int     id;
        int     status;
        if (adap->nr & ~MAX_ID_MASK)
                return -EINVAL;
retry:
        if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
                return -ENOMEM;
        mutex_lock(&core_lists);
        /* "above" here means "above or equal to", sigh;
         * we need the "equal to" result to force the result
         */
        status = idr_get_new_above(&i2c_adapter_idr, adap, adap->nr, &id);
        if (status == 0 && id != adap->nr) {
                status = -EBUSY;
                idr_remove(&i2c_adapter_idr, id);
        }
        mutex_unlock(&core_lists);
        if (status == -EAGAIN)
                goto retry;
        if (status == 0)
                status = i2c_register_adapter(adap);
        return status;
}
EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
/* 注销一个i2c适配器 */
int i2c_del_adapter(struct i2c_adapter *adap)
{
  ...
  /* free bus id */
  idr_remove(&i2c_adapter_idr, adap->nr);
  ...
  return res;
}
EXPORT_SYMBOL(i2c_del_adapter);
/* 通过ID号获得i2c_adapter设备结构体 */
struct i2c_adapter* i2c_get_adapter(int id)
{
        struct i2c_adapter *adapter;
        mutex_lock(&core_lists);
        adapter = (struct i2c_adapter *)idr_find(&i2c_adapter_idr, id);
        if (adapter && !try_module_get(adapter->owner))
                adapter = NULL;
        mutex_unlock(&core_lists);
        return adapter;
}
EXPORT_SYMBOL(i2c_get_adapter);
 

浅析linux内核中的idr机制的更多相关文章

  1. 浅析linux内核中timer定时器的生成和sofirq软中断调用流程(转自http://blog.chinaunix.net/uid-20564848-id-73480.html)

    浅析linux内核中timer定时器的生成和sofirq软中断调用流程 mod_timer添加的定时器timer在内核的软中断中发生调用,__run_timers会spin_lock_irq(& ...

  2. 浅析linux内核中timer定时器的生成和sofirq软中断调用流程【转】

    转自:http://blog.chinaunix.net/uid-20564848-id-73480.html 浅析linux内核中timer定时器的生成和sofirq软中断调用流程 mod_time ...

  3. Linux内核中的信号机制--一个简单的例子【转】

    本文转载自:http://blog.csdn.net/ce123_zhouwei/article/details/8562958 Linux内核中的信号机制--一个简单的例子 Author:ce123 ...

  4. 再谈Linux内核中的RCU机制

    转自:http://blog.chinaunix.net/uid-23769728-id-3080134.html RCU的设计思想比较明确,通过新老指针替换的方式来实现免锁方式的共享保护.但是具体到 ...

  5. Linux内核中TCP SACK机制远程DoS预警通告

    漏洞描述 2019年6月18日,RedHat官网发布报告:安全研究人员在Linux内核处理TCP SACK数据包模块中发现了三个漏洞,CVE编号为CVE-2019-11477.CVE-2019-114 ...

  6. Linux内核中的Workqueue机制分析

    1. 什么是workqueue Linux中的workqueue(工作队列)主要是为了简化在内核创建线程而设计的.通过相应的工作队列接口,可以使开发人员只关心与特定功能相关的处理流程,而不必关心内核线 ...

  7. Linux内核中锁机制之RCU、大内核锁

    在上篇博文中笔者分析了关于完成量和互斥量的使用以及一些经典的问题,下面笔者将在本篇博文中重点分析有关RCU机制的相关内容以及介绍目前已被淘汰出内核的大内核锁(BKL).文章的最后对<大话Linu ...

  8. 大话Linux内核中锁机制之RCU、大内核锁

    大话Linux内核中锁机制之RCU.大内核锁 在上篇博文中笔者分析了关于完成量和互斥量的使用以及一些经典的问题,下面笔者将在本篇博文中重点分析有关RCU机制的相关内容以及介绍目前已被淘汰出内核的大内核 ...

  9. Linux 内核中的 Device Mapper 机制

    本文结合具体代码对 Linux 内核中的 device mapper 映射机制进行了介绍.Device mapper 是 Linux 2.6 内核中提供的一种从逻辑设备到物理设备的映射框架机制,在该机 ...

随机推荐

  1. Oracle碎碎念~2

    1. 如何查看表的列名及类型 SQL> select column_name,data_type,data_length from all_tab_columns where owner='SC ...

  2. 七牛云:ckeditor JS SDK 结合 C#实现多图片上传。

    成功了,搞了2天.分享一下经验. 首先是把官方的那个例子下载下来,然后照如下的方式修改. 其中tempValue是一个全局变量. function savetoqiniu() { var upload ...

  3. 检查sql执行效率

    SELECT  SUBSTRING(ST.text, ( QS.statement_start_offset / 2 ) + 1,                    ( ( CASE statem ...

  4. 腾讯云 安装mono

    一.yum -y update 运行出现以下错误: http://centos.tencentyun.com/contrib/x86_64/repodata/filelists.xml.gz: [Er ...

  5. MonoDevelop 4.2.2/Mono 3.4.0 in CentOS 6.5 安装笔记

    MonoDevelop 4.2.2/Mono 3.4.0 in CentOS 6.5 安装笔记 说明 以root账户登录Linux操作系统,注意:本文中的所有命令行前面的 #> 表示命令行提示符 ...

  6. C#分布式消息队列 EQueue 2.0 发布啦

    前言 最近花了我几个月的业余时间,对EQueue做了一个重大的改造,消息持久化采用本地写文件的方式.到现在为止,总算完成了,所以第一时间写文章分享给大家这段时间我所积累的一些成果. EQueue开源地 ...

  7. keepalived 知识备注

    keepalived可用于配置nginx/lvs等负载均衡设备的双机热备. keepalived基于VRRP协议,简单的说就是两个物理路由节点(一主一备),虚拟成一个逻辑上的路由节点. 实际消息的路由 ...

  8. Unit Of Work的设计

    在DDD开发过程中,一个良好的Uow设计必不可少,我心目中的Uow设计应该具备以下几点: 1.有着良好的抽象,有着恰如其分的命名: 2.能够应付不同的组件,比如你的系统中可能会存在EfUnitOfWo ...

  9. C#与C++的发展历程第四 - C#6的新时代

    *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...

  10. 2016年我们重新思考移动互联网创业的风险, 微信还是APP?

    感觉这两年前端开发又火起来了,很多做内容创业和做微电商创业的人,往往都选择了运营微信号.对于做纯技术开发的人来说,一般是看不上微信号的,感觉没什么技术含量,或者说没什么技术壁垒.也有另一批人观点相反的 ...