hduTHE MATRIX PROBLEM(差分约束)
题目大意:给一个n*m的矩阵,求是否存在这样两个序列:a1,a2。。。an,b1,b2,。。。,bm,使得矩阵的第i行乘以ai,第j列除以bj后,矩阵的每一个数都在L和U之间。
题目分析:比较裸的差分约束。考虑那2个序列,可以抽象出m+n个点。乘除法可以通过取对数转换为加减法。然后就可以得到约束关系:
对于矩阵元素cij,有log(L) <= log(cij) + ai - bj <= log(U),整理可得:
ai - bj <= log(U) - log(cij),n+j向i建边,边权log(U) - log(cij)。
bj - ai<= log(cij) - log(L),i向n+j建边,边权log(cij) - log(L)。
设0为源点,源点到每个点建边,边权0。从源点出发找负环,存在负环无解。
求最短路一般用spfa比较高效,但是如果判断负环的话spfa就比较慢了,因为最坏情况下复杂度依然是O(m*n)的,这题如果用spfa判断一个点进队n+m次就会TLE。一个不严谨的结论是判断sqrt(n+m)次就可以了。
判断负环还有一种更高效的方法:dfs。利用dfs深度优先的特点,找到一条路就一直往下走,能很快找出负环。每次访问一个节点后标记进栈,如果访问到某个点发现已经被标记进栈了,可以直接判断负环。
详情请见代码(二合一):
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 405;
const int M = 805;
const double eps = 1e-7; double c[N][N];
int l,r,n,m,num;
double la,ra;
struct node
{
int to,next;
double val;
}g[10000005];
int head[M],in[M],que[M];
double dis[M];
bool flag[M];
void build(int s,int e,double v)
{
g[num].to = e;
g[num].next = head[s];
g[num].val = v;
head[s] = num ++;
}
bool instack[M];
bool dfs(int cur)
{
if(instack[cur])
return true;
instack[cur] = true;
flag[cur] = true;//visted
int i;
for(i = head[cur];~i;i = g[i].next)
if(dis[cur] + g[i].val < dis[g[i].to])
{
dis[g[i].to] = dis[cur] + g[i].val;
if(dfs(g[i].to))
return true;
}
instack[cur] = false;
return false;
}
bool dspfa()
{
int i;
memset(flag,false,sizeof(flag));
memset(instack,false,sizeof(instack));
for(i = 0;i <= m + n;i ++)
{
dis[i] = 0.0;
}
for(i = 1;i <= m + n;i ++)
if(!flag[i])
if(dfs(i))
return true;
return false;
} bool spfa()
{
int i;
int front,rear;
front = rear = 0;
for(i = 0;i <= m + n;i ++)
{
dis[i] = 100000000.0;
flag[i] = false;
in[i] = 0;
}
dis[0] = 0;
in[0] = 1;
flag[0] = true;
que[rear ++] = 0;
while(front != rear)
{
int u = que[front ++];
if(front == M)
front = 0;
flag[u] = false;
for(i = head[u];~i;i = g[i].next)
{
if(dis[g[i].to] > dis[u] + g[i].val)
{
dis[g[i].to] = dis[u] + g[i].val;
if(flag[g[i].to] == false)
{
flag[g[i].to] = true;
in[g[i].to] ++;
if(in[g[i].to] > (n + m))//sqrt((double)
return false;
que[rear ++] = g[i].to;
if(dis[que[front]] > dis[g[i].to])
swap(que[front],que[rear - 1]);
if(rear == M)
rear = 0;
}
}
}
}
return true;
}
int main()
{
//freopen("out.txt","r",stdin);
int i,j,x;
while(scanf("%d",&n) != EOF)
{
scanf("%d%d%d",&m,&l,&r);
la = log10((double)l);ra = log10((double)r);
memset(head,-1,sizeof(head));
num = 1;
for(i = 1;i <= n + m;i ++)
build(0,i,0.0);
for(i = 1;i <= n;i ++)
for(j = 1;j <= m;j ++)
{
scanf("%d",&x);
c[i][j] = log10((double)x);
build(i,j + n,c[i][j] - la);
build(j + n,i,ra - c[i][j]);
}
if(spfa())//if(!dspfa())
puts("YES");
else
puts("NO");
}
return 0;
}
//671MS 6620K
//312MS 6616K
hduTHE MATRIX PROBLEM(差分约束)的更多相关文章
- HDU3666 THE MATRIX PROBLEM (差分约束+取对数去系数)(对退出情况存疑)
You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...
- HDU3666-THE MATRIX PROBLEM(差分约束-不等式解得存在性判断 对数转化)
You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...
- HDU 3666 THE MATRIX PROBLEM (差分约束)
题意:给定一个最大400*400的矩阵,每次操作可以将某一行或某一列乘上一个数,问能否通过这样的操作使得矩阵内的每个数都在[L,R]的区间内. 析:再把题意说明白一点就是是否存在ai,bj,使得l&l ...
- HDU 3666.THE MATRIX PROBLEM 差分约束系统
THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 1534 Schedule Problem (差分约束)
Schedule Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- HDOJ 1534 Schedule Problem 差分约束
差分约数: 求满足不等式条件的尽量小的值---->求最长路---->a-b>=c----> b->a (c) Schedule Problem Time Limit: 2 ...
- 【转】最短路&差分约束题集
转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...
- 转载 - 最短路&差分约束题集
出处:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★ ...
- 鉴于spfa基础上的差分约束算法
怎么搞? 1. 如果要求最大值 想办法把每个不等式变为标准x-y<=k的形式,然后建立一条从y到x权值为k的边,变得时候注意x-y<k =>x-y<=k ...
随机推荐
- Effective Java 学习笔记之第七条——避免使用终结(finalizer)方法
避免使用终结方法(finalizer) 终结方法(finalizer)通常是不可预测的,也是很危险的,一般情况下是不必要的. 不要把finalizer当成C++中析构函数的对应物.java中,当对象不 ...
- mssql sql高效关联子查询的update 批量更新
/* 使用带关联子查询的Update更新 --1.创建测试表 create TABLE Table1 ( a varchar(10), b varchar(10), ...
- 从cellForRowAtIndexPath 看cell的重用机制
今天突然发现一个问题,由于对UITableViewCell 的重用机制不是很了解,让我纠结很久: 用过reloadData时候,会调用cellForRowAtIndexPath方法,但是请看以下2种c ...
- 用JAVA给JSON进行排版
之前听到朋友的面试题,是如何对JSON进行排版,于是就写了一个Demo,觉得挺有意思的,就贴出来了. 这个就是记录缩进来输出,大家也可以尝试一下其他更好算法来进行输出. 功能:可以把一行的JSON字符 ...
- PHP PDO 简单登陆操作
用PHP做出一个简单的登陆操作,确实很简单,下面就让我给大家简单的介绍一下PDO做出一个登陆界面操作的过程,因为也是初学乍练,不足之处请大家包涵. 首先,首先还要建一个表,在MySQL中建表,核心代码 ...
- Ajax的原理和运行机制
关于ajax,是最近炒得非常火的一种技术,并且时下它也是非常流行.当然,它并不是什么新技术,而是在各种已有的技术和支持机制下的一个统一.在我的项目中,偶尔也会用到ajax,用来给用户一些无刷新的体验. ...
- kill tomcat process in window
1.通过命令netstat -ano | findstr 8080找到tomcat所占用的process,如下图 2.执行ntsd -c q -p 7944 kill刚刚找到的process,然后 ...
- Flask学习记录之Flask-Login
Flask-Loging 可以方便的管理用户会话,保护路由只让认证用户访问 http://flask-login.readthedocs.org/en/latest/ 一.初始化Flask-Login ...
- 浅谈多核CPU、多线程、多进程
1.CPU发展趋势 核心数目依旧会越来越多,依据摩尔定律,由于单个核心性能提升有着严重的瓶颈问题,普通的桌面PC有望在2017年末2018年初达到24核心(或者16核32线程),我们如何来面对这突如其 ...
- Longest Ordered Subsequence
http://poj.org/problem?id=2533 #include<cstdio> #include<iostream> #include<cstring&g ...