HDU 4614 (13年多校第二场1004)裸线段树
题意:给你N个花瓶,编号是0 到 N - 1 ,初始状态花瓶是空的,每个花瓶最多插一朵花。
然后有2个操作。
操作1,a b c ,往在a位置后面(包括a)插b朵花,输出插入的首位置和末位置。
操作2,a b ,输出区间[a , b ]范围内的花的数量,然后全部清空。
很显然这是一道线段树。区间更新,区间求和,这些基本的操作线段树都可以logN的时间范围内完成。
操作2,很显然就是线段树的区间求和,求出[a , b]范围内的花朵的数量,区间更新,将整个区间全部变成0。
操作1,这里我们首先需要找出他的首位置和末位置,所以需要二分他的位置。
首先我们二分他的首位置, l = a , r = n ,在这个区间内二分,找出第一个0的位置,那就是该操作的首位置pos1。
然后再二分他的末位置,l = pos1 , r = n ,找到第b个0,就是该操作的末位置pos2,然后区间更新[pos1 ,pos2]全部置为1。
就像解题报告上讲的一样,这是一道很裸的线段树。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
#include <stack>
#include <map>
#include <iomanip>
#define PI acos(-1.0)
#define Max 2505
#define inf 1<<28
#define LL(x) ( x << 1 )
#define RR(x) ( x << 1 | 1 )
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a))
#define mp(a,b) make_pair(a,b)
#define PII pair<int,int>
using namespace std;
#define M 150005 inline void RD(int &ret) {
char c;
do {
c = getchar();
} while(c < '0' || c > '9') ;
ret = c - '0';
while((c=getchar()) >= '0' && c <= '9')
ret = ret * 10 + ( c - '0' );
}
int n , m ;
int L[M] , R[M] , sum[M] ,add[M] ; void init(){
mem(sum ,0) ;
mem(add, 0) ;
}
void push_up(int x){
sum[x] = sum[LL(x)] + sum[RR(x)] ;
}
void push_down(int x){
if(L[x] == R[x])return ;
if(add[x] == 1){//全部置为1
sum[x] = R[x] - L[x] + 1 ;
sum[LL(x)] = R[LL(x)] - L[LL(x)] + 1 ;
sum[RR(x)] = R[RR(x)] - L[RR(x)] + 1 ;
add[LL(x)] = add[x] ;
add[RR(x)] = add[x] ;
add[x] = 0 ;
}
else if(add[x] == 2){//全部置为0
sum[x] = 0 ;
sum[LL(x)] = 0 ;
sum[RR(x)] = 0 ;
add[LL(x)] = add[x] ;
add[RR(x)] = add[x] ;
add[x] = 0 ;
}
}
void build(int l , int r ,int u){
L[u] = l ;
R[u] = r ;
sum[u] = 0 ;
add[u] = 0 ;
if(l == r)return ;
int mid = l + r >> 1 ;
build(l , mid ,LL(u)) ;
build(mid + 1 ,r ,RR(u)) ;
} void update(int l ,int r ,int u ,int op){
if(l > R[u] || r < L[u])return ;
push_down(u) ;
if(l == L[u] && r == R[u]) {
if(op == 1)
sum[u] = R[u] - L[u] + 1 ;
else sum[u] = 0 ;
add[u] = op ;
return ;
}
int mid = L[u] + R[u] >> 1 ;
if(r <= mid){
update(l ,r ,LL(u) , op) ;
}
else if(l > mid){
update(l , r , RR(u),op) ;
}
else {
update(l , mid ,LL(u),op) ;
update(mid + 1 , r , RR(u) ,op) ;
}
push_up(u) ;
}
int query(int l ,int r ,int u){
if(l > R[u] || r < L[u])return 0 ;
push_down(u) ;
if(l == L[u] && r == R[u]) {
return sum[u] ;
}
int mid = L[u] + R[u] >> 1 ;
if(r <= mid){
return query(l , r, LL(u)) ;
}
else if(l > mid){
return query(l , r ,RR(u)) ;
}
else {
return query(l , mid , LL(u)) + query(mid + 1 , r , RR(u)) ;
}
}
void Noanswer(){
puts("Can not put any one.") ;
}
void answer(int p1, int p2){
printf("%d %d\n",p1, p2) ;
}
void answer(int p){
printf("%d\n",p) ;
}
void debug(int u){ printf(" 节点 %d 区间 : %d - %d \n" , u ,L[u] ,R[u]) ;
printf(" 左子树 %d 右子树 %d \n" , LL(u) ,RR(u) ) ;
printf("父节点sum值:%d\n",sum[u]) ;
push_down(u) ;
if(L[u] == R[u])return ;
debug(LL(u)) ;
debug(RR(u)) ;
}
void solve1(int a , int b){
int pos1 = inf ;
int l = a , r = n ;
int nn = n - a + 1 - query(a , n , 1) ;
if(!nn){//如果区间内没有0的位置了,那么就直接输出。
Noanswer() ;
return ;
}
while(r >= l){//二分首位置
int mid = l + r >> 1 ;
int now = mid - a + 1 - query(a ,mid ,1) ;
if(now >= 1){
pos1 = min(pos1 ,mid) ;
r = mid - 1 ;
}
else l = mid + 1 ;
}
int pos2 = inf ;
nn = n - pos1 + 1 - query(pos1 , n ,1) ;
if(nn <= b){//如果剩余的0的个数小于等于b的数量,那么需要找出最后一个0的位置。
int l = pos1 , r = n ;
while(r >= l){//二分末位置
int mid = r + l >> 1 ;
int now = mid - pos1 + 1 - query(pos1 , mid , 1) ;
if(now == nn){
pos2 = min(pos2 , mid) ;
r = mid - 1 ;
}
else l = mid + 1 ;
}
answer(pos1 - 1, pos2 - 1) ;
update(pos1, pos2 , 1 , 1) ;
}
else {//其实我觉得这个二分和上面那个可以合并的,我懒得改了。
int l = pos1 , r = n ; while(r >= l){//二分末位置
int mid = l + r >> 1 ;
int now = mid - pos1 + 1 - query(pos1, mid, 1) ;
if(now == b){
pos2 = min(pos2 ,mid) ;
r = mid - 1 ;
}
else if(now > b)r = mid - 1 ;
else l = mid + 1 ;
}
answer(pos1 - 1, pos2 - 1 ) ;
update(pos1 ,pos2 ,1, 1) ;
}
}
void solve2(int a , int b){
answer(query(a , b , 1)) ;
update(a , b, 1 , 2) ;
}
int main() {
int T ;
cin >> T ;
int ss = 0 ;
while( T -- ){
scanf("%d%d",&n,&m) ;
init() ;
build(1 ,n , 1) ;
while(m -- ){
//debug(1) ;
int a , b , c ;
RD(a) ;
RD(b) ;
RD(c) ;
if(a == 1){
b ++ ;
solve1(b , c) ;
}
else if(a == 2){
b ++ , c ++ ;
solve2(b , c) ;
}
}
puts("") ;
}
return 0 ;
}
HDU 4614 (13年多校第二场1004)裸线段树的更多相关文章
- MAZE(2019年牛客多校第二场E题+线段树+矩阵乘法)
题目链接 传送门 题意 在一张\(n\times m\)的矩阵里面,你每次可以往左右和下三个方向移动(不能回到上一次所在的格子),\(1\)表示这个位置是墙,\(0\)为空地. 现在有\(q\)次操作 ...
- HDU 4612 (13年多校第二场1002)无向图缩点,有重边
这道题是多校的题,比赛的时候是一道纷纷水过的板刷题. 题意:给你一些无向边,只加一条边,使该图的桥最少,然后输出最少的桥. 思路:当时大致想到思路了,就是缩点之后找出最长的链,然后用总的桥数减去链上的 ...
- hdu 5308 (2015多校第二场第9题)脑洞模拟题,无语
题目链接:http://acm.hdu.edu.cn/listproblem.php?vol=44 题意:给你n个n,如果能在n-1次运算之后(加减乘除)结果为24的输出n-1次运算的过程,如果不能输 ...
- hdu 5301 Buildings (2015多校第二场第2题) 简单模拟
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5301 题意:给你一个n*m的矩形,可以分成n*m个1*1的小矩形,再给你一个坐标(x,y),表示黑格子 ...
- 【HDU 5305】Friends 多校第二场(双向DFS)
依据题意的话最多32条边,直接暴力的话 2 ^ 32肯定超时了.我们能够分两次搜索时间复杂度降低为 2 * 2 ^ 16 唯一须要注意的就是对眼下状态的哈希处理. 我採用的是 十进制表示法 跑的还是 ...
- 多校第二场 1004 hdu 5303 Delicious Apples(背包+贪心)
题目链接: 点击打开链接 题目大意: 在一个周长为L的环上.给出n棵苹果树.苹果树的位置是xi,苹果树是ai,苹果商店在0位置,人的篮子最大容量为k,问最少做多远的距离可以把苹果都运到店里 题目分析: ...
- hdu 6053: TrickGCD (2017 多校第二场 1009) 【莫比乌斯 容斥原理】
题目链接 定义f[n]表示n是最大公约数情况下的计数,F[n]为n是公约数情况下的计数 (可以和 http://www.cnblogs.com/Just--Do--It/p/7197788.html ...
- HDU6312 Game (多校第二场1004) 简单博弈
Game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- hdu6312 2018杭电多校第二场 1004 D Game 博弈
Game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
随机推荐
- new Thread的弊端(转)
new Thread的弊端如下: a. 每次new Thread新建对象性能差.b. 线程缺乏统一管理,可能无限制新建线程,相互之间竞争,及可能占用过多系统资源导致死机或oom.c. 缺乏更多功能,如 ...
- 【HDOJ】3587 NUDOTA
字符串模拟水题. /* 3587 */ #include <iostream> #include <cstdio> #include <cstring> #incl ...
- POJ3267 The Cow Lexicon(dp)
题目链接. 分析: dp[i]表示母串从第i位起始的后缀所对应的最少去掉字母数. dp[i] = min(dp[i+res]+res-strlen(pa[j])); 其中res 为从第 i 位开始匹配 ...
- (转载)apc_fetch
(转载)http://php.net/manual/zh/function.apc-fetch.php apc_fetch (PECL apc >= 3.0.0) apc_fetch — 从缓存 ...
- bzoj3890 [Usaco2015 Jan]Meeting Time
Description Bessie and her sister Elsie want to travel from the barn to their favorite field, such t ...
- Sqlserver2012 alwayson部署攻略
http://wenku.baidu.com/link?url=3Gl5nwxE6Rq4ZKGaKWpYZ1D4OdwVLcVeMoGTOmFSILDJzanPy9fwMPRwr7CRu4HhDzXr ...
- windows server 2003 64x 读取office数据终极解决办法 The 'Microsoft.Jet.OLEDB.4.0' provider is not registered
微软老子信了你的邪! 试了各种办法没有效果 网友解决办法一: The 'Microsoft.Jet.OLEDB.4.0' provider is not registered on the ...
- windows2012R2虚拟机快速激活的方法
相信Hyper-v管理员都有这样的经历,安装多台虚拟机后,都要一台一台手工激活,如果虚拟机足够多的话,这是一项很繁琐的工作,但从Windows Server 2012 R2开始,就不需要这么做了,微软 ...
- Web —— java web 项目开发 笔记
1.tomcat 配置虚拟路径:Tomcat下配置虚拟路径管理web项目 发布路径配置( 即虚拟目录配置 ) 配置虚拟路径的4种方法 2.
- svn解决冲突 Aborting commit: 'XXXXXXXX'remains in conflict错误
如果你遇到冲突,三件事你可以选择: “手动”合并冲突文本(检查和修改文件中的冲突标志). 用某一个临时文件覆盖你的工作文件. 运行svn revert <filename>来放弃所有的修改 ...