UVA Knight Moves
题目例如以下:
| Knight Moves |
A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of
n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplishedthis, finding the tour would be easy.
Of course you know that it is vice versa. So you offer him to write a program that solves the "difficult" part.
Your job is to write a program that takes two squares a and b as input and then determines the number of knight moves on a shortest route from
a to b.
Input Specification
The input file will contain one or more test cases. Each test case consists of one line containing twosquares separated by one space. A square is a string consisting of a letter (a-h) representing thecolumn and a digit (1-8) representing
the row on the chessboard.
Output Specification
For each test case, print one line saying "To get from xx to
yy takes n knight moves.".
Sample Input
e2 e4
a1 b2
b2 c3
a1 h8
a1 h7
h8 a1
b1 c3
f6 f6
Sample Output
To get from e2 to e4 takes 2 knight moves.
To get from a1 to b2 takes 4 knight moves.
To get from b2 to c3 takes 2 knight moves.
To get from a1 to h8 takes 6 knight moves.
To get from a1 to h7 takes 5 knight moves.
To get from h8 to a1 takes 6 knight moves.
To get from b1 to c3 takes 1 knight moves.
To get from f6 to f6 takes 0 knight moves.
模拟象棋里马的前进,求从象棋一点到还有一点马的最短路径长度。简单的宽搜1A了。。。
AC的代码例如以下:
UVA Knight Moves的更多相关文章
- UVA 439 Knight Moves(BFS)
Knight Moves option=com_onlinejudge&Itemid=8&category=11&page=show_problem&problem=3 ...
- UVA 439 Knight Moves --DFS or BFS
简单搜索,我这里用的是dfs,由于棋盘只有8x8这么大,于是想到dfs应该可以过,后来由于边界的问题,TLE了,改了边界才AC. 这道题的收获就是知道了有些时候dfs没有特定的边界的时候要自己设置一个 ...
- UVA 439 Knight Moves
// 题意:输入标准国际象棋棋盘上的两个格子,求马最少需要多少步从起点跳到终点 BFS求最短路: bfs并维护距离状态cnt, vis记录是否访问过 #include<cstdio> ...
- 【UVa】439 Knight Moves(dfs)
题目 题目 分析 没有估价函数的IDA...... 代码 #include <cstdio> #include <cstring> #include <a ...
- uva 439 Knight Moves 骑士移动
这道题曾经写过,bfs.用队列,不多说了,上代码: #include<stdio.h> #include<stdlib.h> #include<string.h> ...
- Knight Moves UVA - 439
A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the sh ...
- Knight Moves
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
- HDU 1372 Knight Moves
最近在学习广搜 这道题同样是一道简单广搜题=0= 题意:(百度复制粘贴0.0) 题意:给出骑士的骑士位置和目标位置,计算骑士要走多少步 思路:首先要做这道题必须要理解国际象棋中骑士的走法,国际象棋中 ...
- [宽度优先搜索] HDU 1372 Knight Moves
Knight Moves Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tot ...
随机推荐
- 练习PYTHON之GEVENT
这个只是作了第一个样例,里面还有很多高级的技巧,希望以后用得着. 我觉得因为以前看过几本LINUX内核,关于异步非阻塞IO,信号,锁之类的,所以理解起来,还可以. import gevent def ...
- 李洪强iOS开发本人集成环信的经验总结_01环信SDK的导入
李洪强iOS开发本人集成环信的经验总结_01环信SDK的导入 01 - 直接在项目中导入SDK和一些静态库 这个时候,没有错误的编译没有错误的话,就说明SDK已经配置成功 还有一种方法是用cocoap ...
- easyui源码翻译1.32--Pagination(分页)
前言 使用$.fn.pagination.defaults重写默认值对象下载该插件翻译源码 该分页控件允许用户导航页面的数据.它支持页面导航和页面长度选择的选项设置.用户可以在分页控件上添加自定义按钮 ...
- linux 和 ecos 内核线程创建/信号量/event等对比
ecos: int gx_thread_create (const char *thread_name, gx_thread_id *thread_id, void(*entry_func)(void ...
- 将一个字符串映射为一个Delphi页面控件属性名(通过FindComponent和GetPropInfo找到这个控件指针)
uses TypInfo; function TForm1.SetControlProp(ComStr, value: string): boolean; var ComName, ComProp: ...
- Delphi GDI+基本用法总结
GDI+以前只是听说过,还没怎么用过,这段时间用了用,觉得挺好用的.在这里总结一下.留个备忘. GDI+(Graphics Device Interface plus)是Windows XP中的一个子 ...
- 【HDOJ】3275 Light
这就是个简单线段树+延迟标记.因为对bool使用了~而不是!,wa了一下午找不到原因. /* 3275 */ #include <iostream> #include <sstrea ...
- keytool 错误: java.io.FileNotFoundException: 拒绝访问
keytool 错误: java.io.FileNotFoundException: 拒绝访问 打开命令行,切换到D:\AndroidStudioProjects\MyApplication\app目 ...
- mapreduce: InputFormat详解 -- RecordReader篇
InputFormat是MapReduce中一个很常用的概念,它在程序的运行中到底起到了什么作用呢? InputFormat其实是一个接口,包含了两个方法: public interface Inpu ...
- 两种应该掌握的排序方法--------1.shell Sort
先了解下什么都有什么排序算法 https://en.wikipedia.org/wiki/Sorting_algorithm http://zh.wikipedia.org/zh/%E6%8E%92% ...