B - LIS

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

 

Description

一组研究人员正在设计一项实验,以测试猴子的智商。他们将挂香蕉在建筑物的屋顶,同时,提供一些砖块给这些猴子。如果猴子足够聪明,它应当能够通过合理的放置一些砖块建立一个塔,并爬上去吃他们最喜欢的香蕉。
 
研究人员有n种类型的砖块,每种类型的砖块都有无限个。第i块砖块的长宽高分别用xi,yi,zi来表示。 同时,由于砖块是可以旋转的,每个砖块的3条边可以组成6种不同的长宽高。
 
在构建塔时,当且仅当A砖块的长和宽都分别小于B砖块的长和宽时,A砖块才能放到B砖块的上面,因为必须留有一些空间让猴子来踩。
 
你的任务是编写一个程序,计算猴子们最高可以堆出的砖块们的高度。

Input

输入文件包含多组测试数据。
每个测试用例的第一行包含一个整数n,代表不同种类的砖块数目。n<=30.
接下来n行,每行3个数,分别表示砖块的长宽高。
当n= 0的时候,无需输出任何答案,测试结束。

Output

对于每组测试数据,输出最大高度。格式:Case 第几组数据: maximum height = 最大高度

Sample Input

1
10 20 30 

6 8 10 
5 5 5 

1 1 1 
2 2 2 
3 3 3 
4 4 4 
5 5 5 
6 6 6 
7 7 7 

31 41 59 
26 53 58 
97 93 23 
84 62 64 
33 83 27 

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21 
Case 3: maximum height = 28 
Case 4: maximum height = 342 
 

题意:把给定的长方体叠加在一起,他们的长宽高可以随意交换,叠加的条件是,上面一个长方体的长和宽都比下面长方体的长

和宽短;求这些长方体能叠加的最高的高度.(其中(3,2,1)可以摆放成(3,2,1)(3,1,2)、(2,1,3)等).在前面一句话看出来点什么没??没有的话继续往下看

思路:其实就是求最长的单调递减序列。在长和宽的递减下,求最大能得出的最大高度了。

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
struct node
{
int l,w,h;
} a[111];
int dp[111];
int cmp(node a,node b)
{
if(a.l>b.l) return 1;
if(a.l==b.l&&a.w>b.w) return 1;
else return 0;
}
int main()
{
int b[3],t,n,k,sum,f=1;
while(cin>>t&&t)
{
k=0;
for(int i=0; i<t; i++)
{
cin>>b[0]>>b[1]>>b[2];
sort(b,b+3);
//记住,这道题可以这么想,长一定大于宽,不然就不叫长了,所以只要找到高的三种情况即可
a[k].l=b[2];
a[k].w=b[1];
a[k].h=b[0]; //每个长方体最小的高
k++;
a[k].l=b[2];
a[k].w=b[0];
a[k].h=b[1];//每个长方体第二高的高
k++;
a[k].l=b[1];
a[k].w=b[0];
a[k].h=b[2];//每个长方体最高的高
k++;
}
sort(a,a+k,cmp);
for(int i=0; i<k; i++)
dp[i]=a[i].h;
for(int i=k-2; i>=0; i--) //下一层
for(int j=i+1; j<k; j++) //上一层
{
if(a[i].l>a[j].l&&a[i].w>a[j].w) //长和宽都要小于上一层的
if(dp[i]<dp[j]+a[i].h) //如果找到更大的高,就要更新
dp[i]=dp[j]+a[i].h;
}
sum=dp[0];
for(int i=0; i<k; i++) if(sum<dp[i])
sum=dp[i];
printf("Case %d: maximum height = %d\n",f++,sum);
}
return 0;
}

HDU 1069 Monkey and Banana(LIS最长上升子序列)的更多相关文章

  1. HDU 1069 Monkey and Banana (动态规划、上升子序列最大和)

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. HDU 1069 Monkey and Banana(DP——最大递减子序列)

    题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=1069 题意描述: 给n块砖,给出其长,宽和高 问将这n块砖,怎样叠放使得满足以下条件使得 ...

  3. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  4. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  5. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

  6. hdu 5256 序列变换(LIS最长上升子序列)

    Problem Description 我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增.其中无论是修改前还是修改后,每个元素都必须是整数. 请输出最少需要修改多 ...

  7. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  8. hdu(1069)——Monkey and Banana(LIS变形)

    题意: 如今给你n个石块,然后它由坐标来表示(x,y,z).可是它能够有不同的方法,也就是说它的三个坐标能够轮换着来的. 石块的数量不限,可是每次都必须保持上底面的长和宽严格递减,然后问你用这些石块所 ...

  9. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  10. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. VMware虚拟机里Ubuntu14.04下安装及配置MySQL

    更新源列表 快捷键"Ctrl+Alt+t"打开"Terminal终端窗口",输入"sudo apt-get update"-->回车- ...

  2. Nginx+Tomcat的服务器端环境配置详解

    这篇文章主要介绍了Nginx+Tomcat的服务器端环境配置详解,包括Nginx与Tomcat的监控开启方法,需要的朋友可以参考下 Nginx+tomcat是目前主流的Javaweb架构,如何让ngi ...

  3. Open XML Format SDK引用

    Excel的便捷使得其在非开发人员的办公中非常流行,而Excel确实也提供了很多有用的功能.很多时候我们还需要以Excel为数据源来进行处理或者将Excel作为模板来生成一些报表.在Open XML ...

  4. UVA10972 - RevolC FaeLoN(双连通分量)

    题目链接 题意: 给定一个无向图,问最少加入多少条边,使得这个图成为连通图 思路:首先注意题目给出的无向图可能是非连通的,即存在孤立点.处理孤立点之后.其它就能够当作连通块来处理.事实上跟POJ335 ...

  5. android 12 click事件的不同实现方式

    <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layo ...

  6. 用 Qt 中的 QDomDocument类 处理 XML 文件(上)

      我们可以看到,如果所要读取的XML文件不是很大,采用DOM读取方法还是很便捷的,由于我用的也是DOM树读取的方法,所以,本文所介绍的也主要是基于DOM的方法读取. 根据常用的操作,我简单的把对XM ...

  7. iOS-C文件添加到iOS项目中,运行报错

    iOS-C文件添加到iOS项目中,运行报错 问题: 往项目中添加一个空的c文件, 编译运行; 出现2,30个编译错误. 原因: 由于在项目中添加了Pch文件,在文件中所有代码还没有开始运行之前, pc ...

  8. objective c 学习(一)

    问题一:我在程序中看到大量的减号.中括号和NS****这种东西,他们是什么玩意儿? 1 减号(或者加号) 减号表示一个函数.或者方法.或者消息的开始,怎么说都行. 比如c#中,一个方法的写法可能是: ...

  9. 第一章 Android体系与系统架构

    1. Dalvik 和 ART(Android Runtime) 在Dalvik中应用好比是一辆可折叠的自行车,平时是折叠的,只有骑的时候,才需要组装起来用.在ART中应用好比是一辆组装好了的自行车, ...

  10. CSS Pseudo-Element Selectors伪对象选择符

    一: CSS3将伪对象选择符(Pseudo-Element Selectors)前面的单个冒号(:)修改为双冒号(::)用以区别伪类选择符(Pseudo-Classes Selectors),但以前的 ...