Poetize4 创世纪
3037: 创世纪
Time Limit: 5 Sec Memory Limit: 128 MB
Submit: 123 Solved: 66
[Submit][Status]
Description
applepi手里有一本书《创世纪》,里面记录了这样一个故事……
上帝手中有着N 种被称作“世界元素”的东西,现在他要把它们中的一部分投放到一个新的空间中去以建造世界。每种世界元素都可以限制另外一种世界元素,所以说上帝希望所有被投放的世界元素都有至少一个没有被投放的世界元素能够限制它,这样上帝就可以保持对世界的控制。
由于那个著名的有关于上帝能不能制造一块连自己都不能举起的大石头的二律背反命题,我们知道上帝不是万能的,而且不但不是万能的,他甚至有事情需要找你帮忙——上帝希望知道他最多可以投放多少种世界元素,但是他只会O(2^N) 级别的算法。虽然上帝拥有无限多的时间,但是他也是个急性子。你需要帮助上帝解决这个问题。
Input
第一行是一个整数N,表示世界元素的数目。
第二行有 N 个整数A1, A2, …, AN。Ai 表示第i 个世界元素能够限制的世界元素的编号。
Output
一个整数,表示最多可以投放的世界元素的数目。
Sample Input
2 3 1 3 6 5
Sample Output
HINT
样例说明
选择2、3、5 三个世界元素即可。分别有1、4、6 来限制它们。
数据范围与约定
对于30% 的数据,N≤10。
对于60% 的数据, N≤10^5。
对于 100% 的数据,N≤10^6,1≤Ai≤N,Ai≠i。
Source
题目大意:给定一张有向图,每个点有且仅有一条出边,要求若一个点x扔下去,至少存在一个保留的点y,y的出边指向x,求最多扔下去多少个点
首先原题的意思就是支配关系 我们反向考虑 求最少保留的点 要求一个点若扔出去 则必须存在一个保留的点指向它
于是这就是最小支配集 不过由于是有向图 所以一个点要么选择 要么被子节点支配 所以就只剩下2个状态了
设f[x]为以x为根的子树选择x的最小支配集 g[x]为不选择x的最小支配集
然后由于是基环树林 所以我们选择一个环上的点 拆掉它的出边 设这个点为x 出边指向的点为y 讨论
1.若x选择 则y一开始就是被支配状态 g[y]初值为0 求一遍最小支配集
2.若x不选 正常求最小支配集即可
两种情况取最小值计入ans 最后输出n-ans即可
然后说一下我关于这张图的形态的理解:
因为原本每个点只有一个出度,入度不定,然后n条边,就是一个 内向树 (直觉上。。。)(用词不专业,不知道对不对。。。)
然后我们存的时候是反过来存的 存每个点能够被哪几个点支配,这样就成了入度为1,出度不定了,就成了一个外向树
所以我们随便找到环上的一个点,然后就可以遍历到所有点。。。而我们找环的时候是顺着原来的边找的,因为这样在环的分叉上回到环。
而这个过程使得一些点没有被标记,所以在DP的时候还要加标记
一些注释写在代码里:
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 1000000+100
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,rt,ban,ans,a[maxn],fa[maxn],head[maxn],f[maxn],g[maxn];
bool v[maxn];
struct edge{int go,next;}e[maxn];
inline void dfs(int x)
{
v[x]=;
if(v[a[x]])rt=x;else dfs(a[x]);
}
inline void dp(int x)
{
f[x]=;g[x]=inf;v[x]=;
if(x==ban)g[x]=;
for(int i=head[x];i;i=e[i].next)
if(i!=rt&&e[i].go!=fa[x])
{
int y=e[i].go;
fa[y]=x;
dp(y);
g[x]+=min(f[y],g[y]);
g[x]=min(g[x],f[x]+f[y]-);//这里巧妙的避免了使用临时变量来存储f[y]与g[y]的最小差值
f[x]+=min(f[y],g[y]);
}
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();int x;
for1(i,n)e[i].go=i,a[i]=x=read(),e[i].next=head[x],head[x]=i;
for1(i,n)
if(!v[i])
{
dfs(i);//找出这棵基环树
ban=a[rt];//选取rt作为x,a[rt]作为y,g[y]=0
dp(rt);
int tmp=f[rt];//限定rt必须选
ban=;
dp(rt);
tmp=min(tmp,g[rt]);//不用选rt
ans+=tmp;
}
printf("%d\n",n-ans);
return ;
}
Poetize4 创世纪的更多相关文章
- 为创世纪图书馆(Library Genesis)作镜像
简介 Library Genesis的Wikipedia条目中的介绍是: Library Genesis or LibGen is a search engine for articles and b ...
- 编程哲学之C#篇:01——创世纪
我们能否像神一样地创建一个世界? 对于创建世界而言,程序员的创作能力最接近于神--相对于导演,作家,漫画家而言,他们创建的世界(作品)一旦完成,就再也不会变化,创建的角色再也不会成长.而程序员创建的世 ...
- 【BZOJ3037/2068】创世纪/[Poi2004]SZP 树形DP
[BZOJ3037]创世纪 Description applepi手里有一本书<创世纪>,里面记录了这样一个故事……上帝手中有着N 种被称作“世界元素”的东西,现在他要把它们中的一部分投放 ...
- [bzoj3037/2068]创世纪[Poi2004]SZP_树形dp_并查集_基环树
创世纪 SZP bzoj-3037/2068 Poi-2004 题目大意:给你n个物品,每个物品可以且仅可以控制一个物品.问:选取一些物品,使得对于任意的一个被选取的物品来讲,都存在一个没有被选取的物 ...
- CH6401 创世纪
6401 创世纪 0x60「图论」例题 描述 上帝手中有 N(N≤10^6) 种世界元素,每种元素可以限制另外1种元素,把第 i 种世界元素能够限制的那种世界元素记为 A[i].现在,上帝要把它们中的 ...
- 图形学创世纪——写在SIGGRAPH 40年的边上
40年的边上" title="图形学创世纪--写在SIGGRAPH 40年的边上"> 前言: SIGGRAPH是由ACM SIGGRAPH(美国计算机协会计算机图形 ...
- JZOJ 3929. 【NOIP2014模拟11.6】创世纪
3929. [NOIP2014模拟11.6]创世纪 (Standard IO) Time Limits: 1000 ms Memory Limits: 65536 KB Description 上帝手 ...
- T1创世纪(原创)
创世纪 这是我的第一道原创题 题解: 这道题的核心算法是:加维度的最短路+贪心 状态:\(dis[i][j][t][a]\)表示在 \(t\) 时,到达 \((i,j)\) ,当前共造\(a\)只&q ...
- 「Poetize4」创世纪
在tyvj上怀疑爆栈了.....或许一定是我写挂了.以后调吧... UPD:bzoj上过了... 题解:https://blog.csdn.net/popoqqq/article/details/39 ...
随机推荐
- camera理论基础和工作原理
写在前面的话,本文是因为工作中需要编写摄像头程序,因为之前没有做过这类产品,所以网上搜索的资料,先整理如下,主要参考文章如下,如果有侵权,请联系我:另外,转载请注明出处.本文不一定全部正确,如果发现错 ...
- Android制作粒子爆炸特效
简介 最近在闲逛的时候,发现了一款粒子爆炸特效的控件,觉得比较有意思,效果也不错. 但是代码不好扩展,也就是说如果要提供不同的爆炸效果,需要修改的地方比较多.于是我对源代码进行了一些重构,将爆炸流程和 ...
- titlebar和actionbar上的按钮设置
---恢复内容开始--- Actionbar加按钮: 在res文件夹下新建menu文件夹(如果你没有),然后添加一个XML文件 <?xml version="1.0" enc ...
- JavaSE、JavaEE、JavaME三者的区别
1. Java SE(Java Platform,Standard Edition). Java SE 以前称为 J2SE. 它允许开发和部署在桌面.服务器.嵌入式环境和实时环境中使用的 Java 应 ...
- selenium+eclipse+python环境
1.下载并安装jdk,配置环境变量: 2.下载并安装python,配置path系统环境变量:D:\Program Files\python34: 3.安装selenium,在安装好的python路径D ...
- 使用AutoMapper实现Dto和Model之间自由转换
应用场景:一个Web应用通过前端收集用户的输入成为Dto,然后将Dto转换成领域模型并持久化到数据库中.另一方面,当用户请求数据时,我们又需要做相反的工作:将从数据库中查询出来的领域模型以相反的方式转 ...
- Xcode断点的一些黑魔法
转自 只会左键断点?是时候试试这样那样断点了 编码不能没调试,调试不能没断点(Break Point).XCode的断点功能也是越来越强大. 基本断点 如下图,这种是最常用的断点,也是最容易设置.左键 ...
- CoreMotion(加速计)
加速计的作用 用于检测设备的运动(比如摇晃) 加速计的经典应用场景 摇一摇 计步器 ********************************** Core Motion获取数据的两种方式 pu ...
- 执行hadoop fs -ls时出现错误RuntimeException: core-site.xml not found
由于暴力关机,Hadoop fs -ls 出现了下图问题: 问题出现的原因是下面红框框里面的东西,我当时以为从另一个节点下载一个conf.cloudera.yarn文件就能解决问题,发现不行啊,于是删 ...
- paramiko SSH 模块简单应用。
目的:需要ssh链接到Linux主机,执行telnet 命令,抓回显匹配制定内容. ssh --->执行telnet到本地端口--->执行类似 ls 的命令.匹配命令执行后的特定回显字段. ...