大致题意:

为了保护放牧环境,避免牲畜过度啃咬同一个地方的草皮,牧场主决定利用不断迁移牲畜进行喂养的方法去保护牧草。然而牲畜在迁移过程中也会啃食路上的牧草,所以如果每次迁移都用同一条道路,那么该条道路同样会被啃咬过度而遭受破坏。

现在牧场主拥有F个农场,已知这些农场至少有一条路径连接起来(不一定是直接相连),但从某些农场去另外一些农场,至少有一条路可通行。为了保护道路上的牧草,农场主希望再建造若干条道路,使得每次迁移牲畜时,至少有2种迁移途径,避免重复走上次迁移的道路。已知当前有的R条道路,问农场主至少要新建造几条道路,才能满足要求?

 
错误做题思路: 求出桥的个数n,也应该考虑重边的情况. 结果应该是 (n + 1) / 2;
但是这样做是错误的 仅仅考虑桥是不可行的
比如一个最简单的图    1-> 2 -> 3 ->4  根据我们的上述结果我们得到 3 个桥,也就是说需要加 两条边就行了, 其实 我们只要将 1 - 4相连就行了。
因此我们上面的结论是错误的。
(思考问题要细心要仔细要全面)
 
正确思路:  要先将图 强联通分量缩点, 在无向图中我们称为边双连通分量。 将所有边双连通分量求出来缩成点,就形成了一棵树,我们只要判断树的叶子结点的个数就行了。
                    假设叶子节点的个数是 n  那么 就有 (n+1)/2 条边就能将这个图变成没有桥的 双连通图
                    判断一个点是否是叶子节点 只要判断这个点的度就行了,度为 1 的点就是叶子节点。
 
 
知识汇总:
求桥:
在求割点的基础上吗,假如一个边没有重边(重边 1-2, 1->2 有两次,那么 1->2 就是有两条边了,那么 1->2就不算是桥了)。
当且仅当 (u,v) 为父子边,且满足 dfn[u] < low[v]
我们求一个边双连通分支,在网上有人说在进行完 Tarjan  之后  根据 low 的值 直接划分边双分支,其实这个是不可行的,下面是反例
 
数据 
4 5
1 2
1 3
2 3
2 4
3 4
 
根据上图我们可以看出来, 他们是属于一个边双连通的分支,但是呢 low值 却是不一样的。
 
这里我们求边双连通分支是和求强联通分支是一样的,但是还有一点区别,其实我们没有必要再标记这个点是否在栈中。
因为我们的边是双向的, 单向的无法确定 u->v   v一定能到 u ? 
 
标价重边:
在这里使用了一个标志变量 K,  假如这个点到父亲的路有两条, 那么我 第一条可以不走,但是第二条必须要走,因为是重边,这样我的儿子节点也就可以更新 low 了。
 
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
#include <stack>
#include <cstring>
usingnamespace std;
#define INF 0xfffffff
#define maxn 10025
#define min(a,b) (a<b?a:b)
int m, n, Time, cnt, top;
int dfn[maxn], block[maxn], low[maxn], Father[maxn], Stack[maxn];
vector<int> G[maxn];
void init()
{
memset(dfn, , sizeof(dfn));
memset(low, , sizeof(low));
memset(block, , sizeof(block));
memset(Father, , sizeof(Father));
top = Time = cnt = ; for(int i=; i<=n; i++)
G[i].clear();
}
void Tarjan(int u,int fa)
{
dfn[u] = low[u] = ++Time;
Father[u] = fa;
Stack[top++] = u;
int len = G[u].size(), v, k = ; for(int i=; i<len; i++)
{
v = G[u][i];
if(v == fa && !k)
{
k ++;
continue;
} if(!low[v])
{
Tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else
low[u] = min(low[u], dfn[v]);
} if(dfn[u] == low[u])
{
do
{
v = Stack[--top];
block[v] = cnt;
}while(u != v);
cnt ++;
}
} void solve()
{
int i, degree[maxn] = {}, ans = ;
for(i=; i<=n; i++)
{
if( !low[i] )
Tarjan(i, i);
} for(i=; i<=n; i++)
{
int v = Father[i];
if(block[i] != block[v])
{
degree[block[i] ] ++;
degree[block[v] ] ++;
}
} for(i=; i<cnt; i++)
{
if(degree[i] == )
ans ++;
}
printf("%d\n", (ans+)/ );
} int main()
{
while(scanf("%d %d",&n, &m) != EOF)
{
init();
while(m --)
{
int a, b;
scanf("%d %d",&a, &b);
G[a].push_back(b);
G[b].push_back(a);
}
solve();
}
return0;
}
 
 
 
 
 
 

POJ 3177 Redundant Paths(重边标记法,有重边的边双连通分支)的更多相关文章

  1. tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

    POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accept ...

  2. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  3. POJ 3177 Redundant Paths(边双连通的构造)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13717   Accepted: 5824 ...

  4. POJ 3177——Redundant Paths——————【加边形成边双连通图】

    Redundant Paths Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  5. POJ 3177 Redundant Paths & POJ 3352 Road Construction(双连通分量)

    Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...

  6. [双连通分量] POJ 3177 Redundant Paths

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13712   Accepted: 5821 ...

  7. poj 3177 Redundant Paths

    题目链接:http://poj.org/problem?id=3177 边双连通问题,与点双连通还是有区别的!!! 题意是给你一个图(本来是连通的),问你需要加多少边,使任意两点间,都有两条边不重复的 ...

  8. POJ 3177 Redundant Paths POJ 3352 Road Construction

    这两题是一样的,代码完全一样. 就是给了一个连通图,问加多少条边可以变成边双连通. 去掉桥,其余的连通分支就是边双连通分支了.一个有桥的连通图要变成边双连通图的话,把双连通子图收缩为一个点,形成一颗树 ...

  9. poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11047   Accepted: 4725 ...

  10. POJ - 3177 Redundant Paths(边双连通分支)(模板)

    1.给定一个连通的无向图G,至少要添加几条边,才能使其变为双连通图. 2. 3. //边双连通分支 /* 去掉桥,其余的连通分支就是边双连通分支了.一个有桥的连通图要变成边双连通图的话, 把双连通子图 ...

随机推荐

  1. VNC服务端自动化配置脚本

    在使用阿里云的linux云主机,看到官方提供的远程连接服务器bash脚本,记录下来.       功能:自动修改系统源和安装vncserver相关的软件包,centos.redhat系列都是安装gno ...

  2. 读取xml字符串

    string strXml = @"<MessageData><pm_id>10</pm_id><pm_title>这是公司或者产品的名称&l ...

  3. C#内存修改

    先通过 System.Diagnostics.Process类获取想要编辑的进程 调用API [Flags]                    public enum ProcessAccessT ...

  4. ashx页面 “检测到有潜在危险的 Request.Form 值”的解决方法(控制单个处理程序不检测html标签)

    如题: 使用web.config的configuration/location节点. 在configuration节点内新建一个location节点,注意这个节点和system.webserver那些 ...

  5. jQuery实现的向下推送图文信息滚动效果

    HTML 我们以新浪微博信息滚动为背景,html中包含了多条微博图文信息,结构如下: <div id="con"> <ul> <li> < ...

  6. nodejs版本控制

    本方法基于https://segmentfault.com/a/1190000004855835修改 配置: 使用的nvmw的git 地址https://github.com/hakobera/nvm ...

  7. php之图片处理类缩略图加水印

    用到两个image系统函数 imagecopymerge — 拷贝并合并图像的一部分 imagecopyresampled — 重采样拷贝部分图像并调整大小 /* 如何知道图片的大小和类型 无法确认调 ...

  8. Java包详解

    背景: 在java中要求文件名和类名相同,所以如果把多个类放在一起,就可能出现文件名冲突 所以用包来解决,一个包中可以包含多个类 包是java提供的一种用于区别类的名字空间的机制,是类的组织方式,是一 ...

  9. Python自动化运维之25、Ajax

    一.概述 对于WEB应用程序:用户浏览器发送请求,服务器接收并处理请求,然后返回结果,往往返回就是字符串(HTML),浏览器将字符串(HTML)渲染并显示浏览器上. 通过在后台与服务器进行少量数据交换 ...

  10. python模块之socket

    43.python模块之socket:       Python在网络通讯方面功能强大,学习一下Socket通讯的基本方式 UDP通讯: Server: import socket port=8081 ...