分析:令f(x)为1到n的gcd(i,j)==x的个数

F(x)为1到n的x|gcd(i,j)的对数

显然F(n)=∑n|df(d)

然后由莫比乌斯反演可得f(n)=∑n|d μ(d/n)*F(d)

由题目显然可得,令cnt=n/x,当cnt<3时,F(x)为0,cnt>=3,F(x)=cnt*(cnt-1)*(cnt-2)/6

然后就是暴力,复杂度,O(T*n)

注:题目链接https://icpc.njust.edu.cn/Problem/Local/1923/

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
using namespace std;
typedef long long LL;
const int N=1e5+;
int n,m,T,prime[N],mu[N];
bool vis[N];
void getmu()
{
mu[] = ;
int cnt = ;
for(int i=; i<=N-; i++)
{
if(!vis[i])
{
prime[cnt++] = i;
mu[i] = -;
}
for(int j=; j<cnt&&i*prime[j]<=N-; j++)
{
vis[i*prime[j]] = ;
if(i%prime[j]) mu[i*prime[j]] = -mu[i];
else
{
mu[i*prime[j]] = ;
break;
}
}
}
}
LL F(int x){
LL tmp=n/x;
if(tmp<)return ;
return tmp*(tmp-)/*(tmp-)/;
}
int main(){
getmu();
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
LL ans=;
for(int i=;i*m<=n;++i){
ans+=mu[i]*F(i*m);
}
printf("%lld\n",ans);
}
return ;
}

njust oj triple 莫比乌斯反演的更多相关文章

  1. 【BZOJ2693】jzptab(莫比乌斯反演)

    [BZOJ2693]jzptab(莫比乌斯反演) 题面 讨厌权限题,只能跑到别的OJ上交 和这题是一样的 多组数据 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 前 ...

  2. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  3. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

  4. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  5. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  6. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  7. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  8. 莫比乌斯函数筛法 & 莫比乌斯反演

    模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...

  9. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

随机推荐

  1. Sublime Text 3的快捷键

    Sublime Text 3是一个非常了不起的软件,它不仅具有令人难以置信的内置功能(多行编辑和VIM模式),而且还支持插件.代码片段和其它许多东西. 今天,我们来总结一下Sublime Text 3 ...

  2. jQuery Mobile里xxx怎么用呀?(缓存篇)

    jQuery Mobile初始页面DOM Cache所引发的问题 HTML元素事件多次触发: jsFiddle: http://jsfiddle.net/gn9JA/2/ cause: 在jsFidd ...

  3. C# Activex开发、打包、签名、发布

    一.前言      最近有这样一个需求,需要在网页上面启动客户端的软件,软件之间的通信.调用,单单依靠HTML是无法实现了,因此必须借用Activex来实现.由于本人主要擅长C#,自然本文给出了用C# ...

  4. Redhat 6.5 x64 下载地址

    http://ftp.okhysing.is/ftp/redhat/6.5/isos/x86_64/

  5. 面试题(C#基础)

    1>构造器Constructor不能被继承,因此不能重写Overriding,但可以被重载Overloading. 2>string[] ss=Enum.GetNames(typeof(C ...

  6. Javascript常见全局函数

      ØdecodeURI() 解码某个编码的 URI ØencodeURI() 把字符串编码为 URI ØdecodeURIComponent() 解码一个编码的 URI 组件 ØencodeURIC ...

  7. 压力测试之apache benchmark

    ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求.前段时间看到 ...

  8. 教育O2O在学校落地,学堂在线瞄准混合式教学

    (大讲台—国内首个it在线教育混合式自适应学习平台.) 进入2015年,互联网教育圈最火的词非“教育O2O”莫属.不断刷新的融资金额和速度,不断曝光的正面和负面新闻,都让教育O2O公司赚足了眼球.然并 ...

  9. Logback 简单使用

    1.Logback为取代log4j而生 Logback是由log4j创始人Ceki Gülcü设计的又一个开源日志组件.logback当前分成三个模块:logback-core,logback- cl ...

  10. Jquery animate的使用方法

    js: $('#colspan').click(function () { if ($('#colspan').hasClass('glyphicon-chevron-up')) { $('#cols ...