SparkStreaming API using DataSets and DataFrames  (New)

使用流式DataSets和流式DataFrames的API

  ◆ 1.创建流式DataFrames和流式Datasets(重点)
  ◆ 2.流式DataFrames/Datasets的操作(重点)
  ◆ 3.启动流查询(重点)
  ◆ 4.管理流查询(了解)
  ◆ 5.监控流查询(了解)
  ◆ 6.使用检查点从故障中恢复(重点)

1.创建流式DataFrames和流式Datasets(重点)

  ◆ 输入源(Input Source)   

    File Source
    Kafka Source
    Socket Source (测试)
    Rate Source (测试,实验性)

  ◆ 流式DataFrames/Datasets的结构类型推断与划分

FileSource:

◆ 须知:从目录中读取文件来作为输入数据流。
支持文件的格式有: text, csv, json, orc, parquet。
◆ 注意:支持glob路径,但不支持多个逗号分隔路径golbs。
◆ 属性:有五个option可以设置:
➢ path:输入目录的路径,对所有文件格式都是通用的
➢ maxFilesPerTrigger:在每个触发器中要考虑的新文件的最大数目(默认值:没有最大值)
➢ latestFirst:首先是否处理最新的新文件,当有大量的文件积压时是有用的(默认值:false)
➢ maxFileAge:默认值是7d 一周:如果latestFirst=true和maxFilesPerTrigger被设置,此配置不生效
➢ fileNameOnly:是否只基于文件名检查新文件而不是完整路径(默认值:false)
将这个值设置为“true”时,下面的文件将被视为同一个文件,
因为它们的文件名“dataset .txt”是相同的: “file:///dataset”
“s3://a/dataset”
“s3n://a/b/dataset”
“s3a://a/b/c/dataset””
◆ 其他配置可以参照以下这个类:
➢ org.apache.spark.sql.execution.streaming.FileStreamOptions

Kafka Source

◆ 须知:Kafka broker的版本需要是0.10.0或者更高版本。
◆ 要使用Kafka,项目的pom.xml需要引入Kafka的依赖
➢ <!-- spark-sql-kafka-0-10 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_2.11</artifactId>
<version>2.3.0</version>
</dependency>

◆ Options 必须设置:
➢ kafka.bootstrap.servers (指定kafka的访问地址host1:port1,host2:port2)
➢ subscribe/subscribepattern/assign(指定kafka中的主题)
➢ failondataloss(数据丢失报错)
➢ startingoffsets 读取数据的起始偏移量
➢ endingoffsets 读取数据的截止偏移量(在流式操作中此配置不生效)
◆ 其他配置可以参照以下这两个类:
➢ org.apache.kafka.clients.CommonClientConfigs
➢ org.apache.kafka.clients.consumer.ConsumerConfig

SocketSource

◆ 须知:从Socket连接中读取UTF8文本数据。在驱动器程序中监听服务网络端口。
◆ 注意:Socket Source只适用于测试,因为它不支持端到端的容错保证。
◆ 有三个option可以设置:
➢ host(必须)
➢ port(必须)
➢ includeTimestamp 默认值false 不生成时间戳日期
◆ 其他配置可以参照以下这个类:
➢ org.apache.spark.sql.execution.streaming.TextSocketSource

RateSource

◆ 须知:只支持测试
◆ 注意: 只有在连续模式中支持的选项才是Nuffice分区和RayScript第二个。

流式DataFrames/Datasets的结构类型推断与划分

  ◆ 默认情况下,基于文件源的结构化流要求必须指定schema,这种限制确保即
  使在失败的情况下也会使用一致的模式来进行流查询。
  ◆ 对于特殊用例,可以通过设置spark.sql.streaming.schemaInference = true。
  此时将会开启Spark自动类型推断功能。
  ◆ 注意:默认Spark sql中自动类型推断为启动状态。
  ◆ 当读取数据的目录中出现/key=value/ 的子目录时,Spark将自动递归这些子目
  录,产生分区发现。
  ◆ 如果用户提供的 schema 中出现了这些列, Spark将会根据正在读取的文件路
  径进行填充。
  ◆ 构成分区结构的目录必须在查询开始时是存在的,并且必须保持static 。
  ➢ 例如,当 /data/year=2015/ 存在时,可以添加 /data/year=2016/,但是更改
  分区列将无效的(即通过创建目录 /data/date=2016-04-17/ )。
  ◆ 注意:如果希望得到的数据可以按照/key=value/这种目录生成时,可以在输出
  数据时借助于partitionBy(“columnName”)

StructuredStreaming(New)的更多相关文章

  1. 2,StructuredStreaming的事件时间和窗口操作

    推荐阅读:1,StructuredStreaming简介 使用Structured Streaming基于事件时间的滑动窗口的聚合操作是很简单的,很像分组聚合.在一个分组聚合操作中,聚合值被唯一保存在 ...

  2. StructuredStreaming简单的例子(NewAPI)

    StructuredStreaming简单的例子(NewAPI)(wordCount) package com.briup.streaming.structed import org.apache.l ...

  3. StructuredStreaming编程模型

    StructuredStreaming编程模型 基本概念 ◆ Time ◆ Trigger ◆ Input ◆ Query ◆ Result ◆ Output  案例模型:实时处理流单词统计编程模型 ...

  4. spark structured-streaming 最全的使用总结

    一.spark structured-streaming  介绍 我们都知道spark streaming  在v2.4.5 之后 就进入了维护阶段,不再有新的大版本出现,而且 spark strea ...

  5. Structured-Streaming之窗口操作

    Structured Streaming 之窗口事件时间聚合操作 Spark Streaming 中 Exactly Once 指的是: 每条数据从输入源传递到 Spark 应用程序 Exactly ...

  6. StructuredStreaming基础操作和窗口操作

    一.流式DataFrames/Datasets的结构类型推断与划分 ◆ 默认情况下,基于文件源的结构化流要求必须指定schema,这种限制确保即 使在失败的情况下也会使用一致的模式来进行流查询. ◆ ...

  7. Spark学习之路 (十八)SparkSQL简单使用

    一.SparkSQL的进化之路 1.0以前: Shark 1.1.x开始: SparkSQL(只是测试性的)  SQL 1.3.x: SparkSQL(正式版本)+Dataframe 1.5.x: S ...

  8. Spark(十二)SparkSQL简单使用

    一.SparkSQL的进化之路 1.0以前:   Shark 1.1.x开始:SparkSQL(只是测试性的)  SQL 1.3.x:          SparkSQL(正式版本)+Datafram ...

  9. Flink 靠什么征服饿了么工程师?

    Flink 靠什么征服饿了么工程师? 2018-08-13    易伟平 阿里妹导读:本文将为大家展示饿了么大数据平台在实时计算方面所做的工作,以及计算引擎的演变之路,你可以借此了解Storm.Spa ...

随机推荐

  1. 深入探究JVM之垃圾回收器

    @ 目录 前言 正文 一.垃圾收集算法 标记-复制 标记-清除 标记-整理 分代回收 二.常用的垃圾回收器 Serial/SerialOld ParNew Parallel Scavenge/Para ...

  2. Android:沉浸式状态栏(一)工具类

    参考自Android 沉浸式状态栏完美解决方案 基本功能 状态栏深色或浅色图标切换 自定义状态栏背景 设置沉浸式状态栏 先准备几个工具类 1.SystemBarTintManager package ...

  3. Developer 转型记:一个开发平台的“魔力”

    摘要:开发者该如何借助AI技术,探索可沉淀的落地应用?在这AI技术浪潮下,实现完美的应用创新?我们一起来听听他的故事…… 随着政策的加持.技术快速的迭代,人工智能热潮正在蔓延.2020年,AI落地大考 ...

  4. PHP date_interval_format() 函数

    ------------恢复内容开始------------ 计算两个日期间的间隔,然后格式化时间间隔: 实例 <?php $date1=date_create("2013-01-01 ...

  5. PHP fgetss() 函数

    定义和用法 fgetss() 函数从打开的文件中返回一行,并过滤掉 HTML 和 PHP 标签. fgetss() 函数会在到达指定长度或读到文件末尾(EOF)时(以先到者为准),停止返回一个新行. ...

  6. PHP isset() 函数

    isset() 函数用于检测变量是否已设置并且非 NULL.高佣联盟 www.cgewang.com 如果已经使用 unset() 释放了一个变量之后,再通过 isset() 判断将返回 FALSE. ...

  7. 树形DP 学习笔记(树形DP、树的直径、树的重心)

    前言:寒假讲过树形DP,这次再复习一下. -------------- 基本的树形DP 实现形式 树形DP的主要实现形式是$dfs$.这是因为树的特殊结构决定的——只有确定了儿子,才能决定父亲.划分阶 ...

  8. ios_中将UITextField输入框设置为密码形式

    1.通过XIB方式实现: 将UITextField中的secure选项勾中即可. 2.通过代码实现: UItextField * test = [ UItextField alloc] init ]; ...

  9. python4.4模块

    import random                         #import导入,random随机数模块a=random.random()                         ...

  10. Linux入门-程序开发

    Linux程序开发 linux程序总体上来说是分两部分的: 1. 底层驱动程序开发: 2.应用层应用程序开发: 驱动程序 一般情况下驱动是跟内核与硬件有关系的,编程语言是C语言,需要懂一些硬件的知识, ...