「LOJ 539」「LibreOJ NOIP Round #1」旅游路线
description
- 题面较长,这里给出题目链接
solution
- 考虑预处理出\(f[i][j]\)表示在第\(i\)个点加满油后,从第\(i\)个点出发,至多消耗\(j\)元钱走过的最大路程,那么对于每一个询问就可以二分答案\(O(logq)\)查询了
- 可以得出转移方程\(f[i][k]=\max(f[j][k-p[j]]+g[i][j],f[i][k])\),其中\(g[i][j]\)表示从在\(i\)点加满油后从\(i\)走到\(j\)能走过的最大路程
- \(g\)可以使用倍增\(floyd\)预处理出\(h[k][i][j]\)表示从\(i\)走到\(j\),至多走\(2^k\)步的最长路程后求出。
- 倍增\(floyd\)代码:
for(int k=1;k<=16;++k){
memcpy(h[k],h[k-1],sizeof(h[k]));
for(int w=1;w<=n;++w)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
if(h[k-1][i][w]>inf&&h[k-1][w][j]) h[k][i][j]=max(h[k][i][j],h[k-1][i][w]+h[k-1][w][j]);
}
- 于是我们就可以\(O(n^3logC)\)完成预处理,总时间复杂度\(O(n^3logC+Tlogq)\)
code
#include<bits/stdc++.h>
using namespace std;
const int N=110;
int n,m,C,T,p[N],c[N],b[N],inf;
inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*f;
}
int f[N][N*N];//在i加了油后出发,用j块钱能走的最大路程
int g[N][N];//在i处加了油后从i到j的最长路
int h[20][N][N];//从i走到j,至多走1<<k条路的最长路
int main(){
n=read();m=read();C=read();T=read();
for(int i=1;i<=n;++i) p[i]=read(),c[i]=read();
memset(h,192,sizeof(h));inf=h[0][0][0];
for(int i=1;i<=n;++i) h[0][i][i]=0;
for(int i=1;i<=m;++i){
int u=read(),v=read(),w=read();
h[0][u][v]=max(h[0][u][v],w);
}
for(int k=1;k<=16;++k){
memcpy(h[k],h[k-1],sizeof(h[k]));
for(int w=1;w<=n;++w)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
if(h[k-1][i][w]>inf&&h[k-1][w][j]) h[k][i][j]=max(h[k][i][j],h[k-1][i][w]+h[k-1][w][j]);
}
for(int i=1;i<=n;++i){
memset(g[i],192,sizeof(g[i]));g[i][i]=0;
int s=min(C,c[i]);
for(int k=0;k<=16;++k){
if((s>>k)&1){
memset(b,inf,sizeof(b));
for(int j=1;j<=n;++j){
if(g[i][j]>inf){
for(int w=1;w<=n;++w)
if(h[k][j][w]>inf) b[w]=max(b[w],g[i][j]+h[k][j][w]);
}
}
memcpy(g[i],b,sizeof(b));
}
}
}
for(int k=0;k<=n*n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
f[i][k]=max(f[i][k],g[i][j]);
for(int k=0;k<=n*n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
if(k>=p[j]) f[i][k]=max(f[i][k],f[j][k-p[j]]+g[i][j]);
while(T--){
int u=read(),q=read(),d=read();
int l=p[u],r=q;
while(l<r){
int mid=(l+r)>>1;
if(f[u][mid-p[u]]>=d) r=mid;
else l=mid+1;
}
if(f[u][l-p[u]]<d) puts("-1");
else printf("%d\n",q-l);
}
return 0;
}
「LOJ 539」「LibreOJ NOIP Round #1」旅游路线的更多相关文章
- LOJ#539. 「LibreOJ NOIP Round #1」旅游路线
n<=100,m<=1000的图,在此图上用油箱容量C<=1e5的车来旅行,旅行时,走一条边会耗一单伟油,在点i时,若油量<ci,则可以把油以pi的价格补到ci,pi<= ...
- LOJ #539. 「LibreOJ NOIP Round #1」旅游路线 倍增floyd + 思维
考试的时候是这么想的: 求出每一个点花掉 $i$ 的花费向其他点尽可能走的最长距离,然后二分这个花费,找到第一个大于 $d$ 的就输出$.$然而,我这个记忆化搜索 $TLE$ 的很惨$.$这里讲一下正 ...
- 「LOJ 537」「LibreOJ NOIP Round #1」DNA 序列
description NOIP 复赛之前,HSD 桑进行了一项研究,发现人某条染色体上的一段 DNA 序列中连续的\(k\)个碱基组成的碱基序列与做题的 AC 率有关!于是他想研究一下这种关系. 现 ...
- LibreOJ #539. 「LibreOJ NOIP Round #1」旅游路线(倍增+二分)
哎一开始看错题了啊T T...最近状态一直不对...最近很多傻逼题都不会写了T T 考虑距离较大肯定不能塞进状态...钱数<=n^2能够承受, 油量再塞就不行了...显然可以预处理出点i到j走c ...
- 【LibreOJ】#539. 「LibreOJ NOIP Round #1」旅游路线
[题意]给定正边权有向图,车油量上限C,每个点可以花费pi加油至min(C,ci),走一条边油-1,T次询问s点出发带钱q,旅行路程至少为d的最多剩余钱数. n<=100,m<=1000, ...
- LOJ#541. 「LibreOJ NOIP Round #1」七曜圣贤
有一辆车一开始装了编号0-a的奶茶,现有m次操作,每次操作Pi在[-1,b),若Pi为一个未出现过编号的奶茶,就把他买了并装上车:若Pi为一个在车上的奶茶,则把他丢下车:否则,此次操作为捡起最早丢下去 ...
- 「LOJ 538」「LibreOJ NOIP Round #1」数列递推
description sosusosu 虐爆 OI 之后成为了一名文化课选手.一天,他做作业碰到了一堆数列问题,每道题给出的数列都是以下形式: 给定一个下标从\(0\)开始,无限长的整数列\({a_ ...
- 「LOJ 541」「LibreOJ NOIP Round #1」七曜圣贤
description 题面很长,这里给出题目链接 solution 用队列维护扔掉的红茶,同时若后扔出的红茶比先扔出的红茶编号更小,那么先扔出的红茶不可能成为答案,所以可以用单调队列维护 故每次询问 ...
- LibreOj #539. 「LibreOJ NOIP Round #1」旅游路线
题目链接 做完这道题,我深知当一个问题复杂度过高的时候,把一些可以分离的操作都分散开,可以大幅度降低复杂度..... 发现无论有多少钱,每到一个点后扩展到的距离被限制在 \(min(C, c[i])\ ...
随机推荐
- oracle 1day
1.主流数据库: 2.项目选择数据库的原则: 3.oracle 常用用户sys (sysdba系统管理员),system(sysoper系统操作员),scott(密码tiger) sys login: ...
- WAI-ARIA无障碍网页资料
一.ARIA是啥? WAI-ARIA指无障碍网页应用.主要针对的是视觉缺陷,失聪,行动不便的残疾人以及假装残疾的测试人员.尤其像盲人,眼睛看不到,其浏览网页则需要借助辅助设备,如屏幕阅读器,屏幕阅读机 ...
- [String] intern()方法
intern()方法设计的初衷,就是重用String对象,以节省内存消耗. JDK1.6以及以前版本中,常量池是放在 Perm 区(属于方法区)中的,熟悉JVM的话应该知道这是和堆区完全分开的. 使用 ...
- nacos 作为配置中心使用心得--配置使用
1.页面配置 撇开原理不谈,先来介绍下nacos的基本使用,如下图nacos配置是以data id为单位进行使用的,基本上一个服务的一个配置文件就对应一个data id,支持的格式有xml,yaml, ...
- 看完这篇 final、finally 和 finalize 和面试官扯皮就没问题了
我把自己以往的文章汇总成为了 Github ,欢迎各位大佬 star https://github.com/crisxuan/bestJavaer 已提交此篇文章 final 是 Java 中的关键字 ...
- vue父组件促发子组件中的方法
实现在父组件中促发子组件里面的方法 子组件: <template> <div> 我是子组件 </div> </template> <script& ...
- 842. Split Array into Fibonacci Sequence —— weekly contest 86
题目链接:https://leetcode.com/problems/split-array-into-fibonacci-sequence/description/ 占坑. string 的数值转换 ...
- java 执行shell命令及日志收集避坑指南
有时候我们需要调用系统命令执行一些东西,可能是为了方便,也可能是没有办法必须要调用.涉及执行系统命令的东西,则就不能做跨平台了,这和java语言的初衷是相背的. 废话不多说,java如何执行shell ...
- Android序列化问题与思考
今天再来谈谈Android中的对象序列化,你了解多少呢? 序列化指的是什么?有什么用 序列化指的是讲对象变成有序的字节流,变成字节流之后才能进行传输存储等一系列操作. 反序列化就是序列化的相反操作,也 ...
- CSS实现模拟百度分享侧边栏效果
在<JS模拟百度分享侧边栏效果>一文中对于Div区块的运动通过JS实现了鼠标移入滑出显示,鼠标移出滑入隐藏的效果.其实在CSS3中通过transition属性就可以较为轻松实现. < ...