BSOJ在哪我也不知道 没有链接.

对于有标号无根树的统计和有度数限制 一般采用prufer序列。

根据prufer序列 容易知道 某个点的出现次数+1为当前点的度数。

对于这道题 考虑设f[i][j]表示前i个点填了prufer序列j个位置时的方案数。

不过这样做存在的问题是 最后我们要求恰好k个点形成的长度为k-2的prufer序列的方案数。

如果设这个状态 这个状态到底有多少个点我们无从得知。

所以需要再开一维状态 表示当前使用了k个点。

转移 :由于状态相当于答案 对于j个位置时相当于只有j个位置时的答案 所以要扩充w个位置时 那么显然C(w+j,w).

复杂度n^4 不过跑不满。

const ll MAXN=102;
ll n;
ll a[MAXN];
ll fac[MAXN],inv[MAXN],f[MAXN][MAXN][MAXN];//f[i][j][k]表示前i个点选出了使用了j个点构成长度为k的prufer序列的方案数.
inline ll ksm(ll b,ll p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;p=p>>1;
}
return cnt;
}
inline ll C(ll a,ll b){return a<b?0:fac[a]*inv[b]%mod*inv[a-b]%mod;}
signed main()
{
freopen("1.in","r",stdin);
get(n);fac[0]=1;f[0][0][0]=1;
rep(1,n,i)get(a[i]),fac[i]=fac[i-1]*i%mod;
inv[n]=ksm(fac[n],mod-2);
fep(n-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
rep(1,n,i)
{
rep(0,i,j)
{
rep(0,n,k)
{
f[i][j][k]=(f[i][j][k]+f[i-1][j][k])%mod;
if(j>=1)rep(1,a[i],l)if(k-l+1>=0)f[i][j][k]=(f[i][j][k]+f[i-1][j-1][k-l+1]*C(k,l-1))%mod;
else break;
}
}
}
put_(n);rep(2,n,i)put_(f[n][i][i-2]);
return 0;
}

BSOJ 5445 -- 【2018雅礼】树 prufer序列 dp的更多相关文章

  1. 一类巧妙利用利用失配树的序列DP

    I.导入 求长度为\(\text{len}\)的包含给定连续子串\(\text{T}\)的 0/1 串的个数.(\(|T|<=15\)) 通常来说这种题目应该立刻联想到状压 DP 与取反集--这 ...

  2. 【XSY2519】神经元 prufer序列 DP

    题目描述 有\(n\)点,每个点有度数限制,\(\forall i(1\leq i\leq n)\),让你选出\(i\)个点,再构造一棵生成树,要求每个点的度数不超过度数限制.问你有多少种方案. \( ...

  3. BSOJ 5553 wangyurzee的树 prufer序列 容斥

    BSOJ我也不知道在哪. 容易想到容斥. 考虑不合法的方案 想到强制某个点的度数为限制即可. 这样就变成了了总方案-一个不合法+两个不合法-3个......的模型了. 坑点 当强制两个相同的点时 方案 ...

  4. vjudge CountTables/2018雅礼集训 方阵 dp 斯特林反演

    LINK:CountTables 神题! 首先单独考虑行不同的情况 设\(f_i\)表示此时有i列且 行都不同. 那么显然有 \(f_i=(c^i)^\underline{n}\) 考虑设\(g_i\ ...

  5. 【Foreign】树 [prufer编码][DP]

    树 Time Limit: 10 Sec  Memory Limit: 256 MB Description Input Output Sample Input 3 2 2 1 Sample Outp ...

  6. 洛谷.4383.[八省联考2018]林克卡特树lct(树形DP 带权二分)

    题目链接 \(Description\) 给定一棵边带权的树.求删掉K条边.再连上K条权为0的边后,新树的最大直径. \(n,K\leq3\times10^5\). \(Solution\) 题目可以 ...

  7. P4383 [八省联考2018]林克卡特树lct 树形DP+凸优化/带权二分

    $ \color{#0066ff}{ 题目描述 }$ 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的 ...

  8. 洛谷 4383 [八省联考2018]林克卡特树lct——树形DP+带权二分

    题目:https://www.luogu.org/problemnew/show/P4383 关于带权二分:https://www.cnblogs.com/flashhu/p/9480669.html ...

  9. BZOJ 1211 HNOI2004 树的计数 Prufer序列

    题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...

随机推荐

  1. python 请使用迭代查找一个list中最小和最大值,并返回一个tuple

    请使用迭代查找一个list中最小和最大值,并返回一个tuple: 要注意返回的值的类型是不是tuple def findMinAndMax(L): min=0 max=0 if len(L)==0: ...

  2. Buy a Ticket,题解

    题目连接 题意: 没个位置有一个点权,每个边有一个边权,求对于每个点u的min(2*d(u,v)+val[v])(v可以等于u) 分析: 我们想这样一个问题,从u到v的边权*2再加一个点权就完了,我们 ...

  3. Sta,题解

    题目: 分析: 这个有点过于简单,两次Dfs处理出Dp[i],Son[i],Deep[i],Val[i](分别表示以1为根时i所有子树的深度之和,以1为根时i子树节点个数,以1为根时i深度,以i为根时 ...

  4. DLL注入之修改PE静态注入

    DLL注入之修改PE静态注入 0x00 前言 我们要注入的的力量功能是下载baidu首页数据.代码如下: #include "stdio.h" #include"stdi ...

  5. 核心知识点:python入门

    目录 一.python入门day1-day24 day01-03 编程语言 day04 变量 day05 垃圾回收机制(GC机制) 1 引用计数 2 标记清除 3 分代回收 day05 程序交互与基本 ...

  6. Hadoop集群之浅析安全模式

    集群启动顺序: NameNode启动 NameNode启动时,首先将镜像文件(Fsimage)载入内存,并执行编辑日志(Edits)中的各项操作.一旦在内存中成功建立文件系统元数据的映像,则创建一个新 ...

  7. Django框架08 /聚合查询、分组、F/Q查询、原生sql相关

    Django框架08 /聚合查询.分组.F/Q查询.原生sql相关 目录 Django框架08 /聚合查询.分组.F/Q查询.原生sql相关 1. 聚合查询 2. 分组 3. F查询和Q查询 4. o ...

  8. 【IDEA】创建maven项目,webapp没有被标识,无法识别

    问题描述 新建maven项目模块后,webapp目录未被标识,也就是没有小蓝点的图标显示. 解决方法 点击"File"下的"Project Strucure", ...

  9. Lodash中数组常用方法

    数组方法 1.数组对象去重 differenceBy(array, [values], [iteratee=_.identity]) let newArr =_.differenceBy( [{ na ...

  10. Python Ethical Hacking - MODIFYING DATA IN HTTP LAYER(3)

    Recalculating Content-Length: #!/usr/bin/env python import re from netfilterqueue import NetfilterQu ...