每日一题 LeetCode 679. 24点游戏 【递归】【全排列】
题目链接
https://leetcode-cn.com/problems/24-game/
题目说明

题解
主要方法:递归 + 全排列
解释说明:
将 4 个数进行组合形成算式,发现除了 (a❈b)❈(c❈d) 的形式外,都可以通过单一的数字进行拆解,比如 (a*b+c)/d 可以逐步拆解成 (d -> (c -> (a -> (b))))。所以我们将特殊形式单独用全排列处理,一般情况用递归进行处理。
递归:
入口(数字list,目标值target)
下一步(取list中的一个值,将该值与target运算,算出list剩余的数应该得到怎样的值)
出口(list只剩一个值,与target相等)特殊处理: 对于 (a❈b)❈(c❈d) 的形式,将四个数字进行全排列后对每个可能的算式进行运算
代码示例:
class Solution:
def judgePoint24(self, nums: List[int]) -> bool:
#考虑精度误差,当结果与 24 的误差在 1e6 以内可以认为相等
EPSILON = 1e-6
def dfs(numbers, target):
if len(numbers) == 1:
return True if abs(numbers[0] - target) < EPSILON else False
for idx,num in enumerate(numbers):
tmp_nums = numbers[:]
tmp_nums.remove(num)
if dfs(tmp_nums, target - num) or dfs(tmp_nums, num - target) or (target and dfs(tmp_nums, num / target)) or (num and dfs(tmp_nums, target / num)):
return True
return False
if dfs(nums, 24):
return True
# 将 (a b) (c d) 的特殊情况单独处理,其他情况都可以从一个数逐步拆解
for num_arrange in list(permutations(nums)):
if (num_arrange[0] + num_arrange[1]) * (num_arrange[2] + num_arrange[3]) == 24 \
or (num_arrange[0] + num_arrange[1]) * (num_arrange[2] - num_arrange[3]) == 24 \
or (num_arrange[0] - num_arrange[1]) * (num_arrange[2] + num_arrange[3]) == 24 \
or (num_arrange[0] - num_arrange[1]) * (num_arrange[2] - num_arrange[3]) == 24 \
or ((num_arrange[2] + num_arrange[3]) and (num_arrange[0] + num_arrange[1]) / (num_arrange[2] + num_arrange[3]) == 24) \
or ((num_arrange[2] - num_arrange[3]) and (num_arrange[0] + num_arrange[1]) / (num_arrange[2] - num_arrange[3]) == 24) \
or ((num_arrange[2] + num_arrange[3]) and (num_arrange[0] - num_arrange[1]) / (num_arrange[2] + num_arrange[3]) == 24) \
or ((num_arrange[2] - num_arrange[3]) and (num_arrange[0] - num_arrange[1]) / (num_arrange[2] - num_arrange[3]) == 24):
return True
return False
大神的暴力美学
https://leetcode.com/problems/24-game/discuss/107675/Short-Python
def helper(nums):
print(nums)
if len(nums) == 1:
return math.isclose(nums[0], 24)
return any(helper((x,) + tuple(rest)) for a, b, *rest in permutations(nums) for x in
{a + b, a - b, a * b, b and a / b})
return helper(tuple(nums))
每日一题 LeetCode 679. 24点游戏 【递归】【全排列】的更多相关文章
- Java实现 LeetCode 679 24 点游戏(递归)
679. 24 点游戏 你有 4 张写有 1 到 9 数字的牌.你需要判断是否能通过 *,/,+,-,(,) 的运算得到 24. 示例 1: 输入: [4, 1, 8, 7] 输出: True 解释: ...
- Leetcode 679.24点游戏
24点游戏 你有 4 张写有 1 到 9 数字的牌.你需要判断是否能通过 *,/,+,-,(,) 的运算得到 24. 示例 1: 输入: [4, 1, 8, 7] 输出: True 解释: (8-4) ...
- Leetcode之深度优先搜索&回溯专题-679. 24 点游戏(24 Game)
Leetcode之深度优先搜索&回溯专题-679. 24 点游戏(24 Game) 深度优先搜索的解题详细介绍,点击 你有 4 张写有 1 到 9 数字的牌.你需要判断是否能通过 *,/,+, ...
- [leetcode] 679. 24 Game (Hard)
24点游戏,游戏规则就是利用().+.-. *. /,对四个数字任意运算,可以得出24点则为true. 排列组合问题,最多有A42*A32*A22*4*4*4,也就是12*6*2*4*4=9216种组 ...
- [LeetCode] 679. 24 Game(回溯法)
传送门 Description You have 4 cards each containing a number from 1 to 9. You need to judge whether the ...
- 每日一题-——LeetCode(121)买卖股票的最佳时机
题目描述: 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格.如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润.注意你不能在买入股票前卖出股票 ...
- 每日一题-——LeetCode(78)子集
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集).输入: nums = [1,2,3]输出:[ [3], [1], [2], [1,2,3], [1,3], [2, ...
- 每日一题-——LeetCode(46)全排列
题目描述: 给定一个没有重复数字的序列,返回其所有可能的全排列.输入: [1,2,3]输出:[ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ...
- 每日一题-——LeetCode(486) 预测赢家
题目描述: 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到 ...
随机推荐
- 在一台电脑上,添加多个Git的ssh key
Git的第一套公秘钥默认名为 id_rsa ,如果你想要生成另外一个公钥,比如 aysee ,你也可以使用任何你喜欢的名字. 步骤如下:(总共四大操作) 一.生成ssh key 1.生成一个新的自定义 ...
- Angular(二) - 组件Component
1. 组件Component示例 2. Component常用的几个选项 3. Component全部的选项 3.1 继承自@Directive装饰器的选项 3.2 @Component自己特有的选项 ...
- js 基础面试
1.['1', '2', '3'].map(parseInt) let arr = ['1', '2', '3'] let res1 = arr.map(Number) // [ 1, 2, 3 ] ...
- Agumater 爬虫进度带上了百分比,消除了.0
- House of Orange
题目附件:https://github.com/ctfs/write-ups-2016/tree/master/hitcon-ctf-2016/pwn/house-of-orange-500 查看程序 ...
- Solr专题(一)手把手教你搭建Solr服务
一.Solr是什么,能解决什么问题? Solr是一个高性能,采用Java开发,基于Lucene的全文搜索服务器.同时对其进行了扩展,提供了比Lucene更为丰富的查询语言,同时实现了可配置.可扩展并对 ...
- Combine 框架,从0到1 —— 4.在 Combine 中使用 KVO
本文首发于 Ficow Shen's Blog,原文地址: Combine 框架,从0到1 -- 4.在 Combine 中使用 KVO. 内容概览 前言 用 KVO 监控改动 将 KVO 代 ...
- Java基础语法(10)-面向对象之三大特征
title: Java基础语法(9)-面向对象之类的成员 blog: CSDN data: Java学习路线及视频 1.面向对象特征--封装 为什么需要封装?封装的作用和含义? 我要用洗衣机,只需要按 ...
- Java11-ZGC
Java 11包含一个全新的垃圾收集器--ZGC,它由Oracle开发,承诺在数TB的堆上具有非常低的暂停时间. 在本文中,我们将介绍开发新GC的动机,技术概述以及由ZGC开启的一些可能性. 那么为什 ...
- Java随谈(一)魔术数字、常量和枚举
本文适合对 Java 或 C 有一些了解的用户阅读,推荐阅读时间15分钟. 导言 写这个系列的原因? 我曾经听过一种说法,如果不了解Liunx的网络通讯,就很难理解理解Java的IO:如果不知道Jav ...