Problem Description
#define xhxj (Xin Hang senior sister(学姐)) 
If you do not know xhxj, then carefully reading the entire description is very important.
As the strongest fighting force in UESTC, xhxj grew up in Jintang, a border town of Chengdu.
Like many god cattles, xhxj has a legendary life: 
2010.04, had not yet begun to learn the algorithm, xhxj won the second prize in the university contest. And in this fall, xhxj got one gold medal and one silver medal of regional contest. In the next year's summer, xhxj was invited to Beijing to attend the astar onsite. A few months later, xhxj got two gold medals and was also qualified for world's final. However, xhxj was defeated by zhymaoiing in the competition that determined who would go to the world's final(there is only one team for every university to send to the world's final) .Now, xhxj is much more stronger than ever,and she will go to the dreaming country to compete in TCO final.
As you see, xhxj always keeps a short hair(reasons unknown), so she looks like a boy( I will not tell you she is actually a lovely girl), wearing yellow T-shirt. When she is not talking, her round face feels very lovely, attracting others to touch her face gently。Unlike God Luo's, another UESTC god cattle who has cool and noble charm, xhxj is quite approachable, lively, clever. On the other hand,xhxj is very sensitive to the beautiful properties, "this problem has a very good properties",she always said that after ACing a very hard problem. She often helps in finding solutions, even though she is not good at the problems of that type.
Xhxj loves many games such as,Dota, ocg, mahjong, Starcraft 2, Diablo 3.etc,if you can beat her in any game above, you will get her admire and become a god cattle. She is very concerned with her younger schoolfellows, if she saw someone on a DOTA platform, she would say: "Why do not you go to improve your programming skill". When she receives sincere compliments from others, she would say modestly: "Please don’t flatter at me.(Please don't black)."As she will graduate after no more than one year, xhxj also wants to fall in love. However, the man in her dreams has not yet appeared, so she now prefers girls.
Another hobby of xhxj is yy(speculation) some magical problems to discover the special properties. For example, when she see a number, she would think whether the digits of a number are strictly increasing. If you consider the number as a string and can get a longest strictly increasing subsequence the length of which is equal to k, the power of this number is k.. It is very simple to determine a single number’s power, but is it also easy to solve this problem with the numbers within an interval? xhxj has a little tired,she want a god cattle to help her solve this problem,the problem is: Determine how many numbers have the power value k in [L,R] in O(1)time.
For the first one to solve this problem,xhxj will upgrade 20 favorability rate。
 
Input
First a integer T(T<=10000),then T lines follow, every line has three positive integer L,R,K.(
0<L<=R<263-1 and 1<=K<=10).
 
Output
For each query, print "Case #t: ans" in a line, in which t is the number of the test case starting from 1 and ans is the answer.
 
Sample Input
1
123 321 2
 
Sample Output
Case #1: 139

题意:求l到r中数字满足 严格上升的个数为k的数 的个数

思路:因为是求严格上升 所以数组很小 而且数字的大小只有1~9 所以可以用二进制来标记LIS数组(了解nlognLIS的求法) 再开一维是记录k 方便记忆化

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
int dir[2][2]={1,0 ,0,1};
int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1};
const int inf=0x3f3f3f3f;
ll dp[20][1<<10][11]; //i位数 最大上升子序列状态为s 所求个数为k
int bits[20];
ll l,r,k;
ll update(int num,int x){ //维护LIS数组
bool f=0;
for(int i=x;i<10;i++){
if(num&(1<<i)){
f=1;
num=num^(1<<i);
break;
}
}
return num|(1<<x);
}
ll getnum(int num){ //计算1的个数
ll cnt=0;
for(int i=0;i<10;i++){
if(num&(1<<i)) ++cnt;
}
return cnt;
}
ll dfs(int len,int num,bool have0,bool ismax){
if(!len) return getnum(num)==k;
if(!ismax&&dp[len][num][k]>=0) return dp[len][num][k];
int up=ismax?bits[len]:9;
ll cnt=0;
for(int i=0;i<=up;i++){
if(have0&&i==0){
cnt+=dfs(len-1,num,have0,ismax&&i==up);
}else{
cnt+=dfs(len-1,update(num,i),have0&&(i==0),ismax&&i==up);
}
}
if(!ismax) dp[len][num][k]=cnt;
return cnt;
}
ll solve(ll x){
int len=0;
while(x){
bits[++len]=x%10;
x/=10;
}
return dfs(len,0,1,1);
}
int main(){
//ios::sync_with_stdio(false);
int t;
scanf("%d",&t);
int w=0;
memset(dp,-1,sizeof(dp));
while(t--){
scanf("%lld%lld%lld",&l,&r,&k);
printf("Case #%d: %lld\n",++w,solve(r)-solve(l-1));
}
return 0;
}

hdu 4352 XHXJ's LIS(数位dp+状压)的更多相关文章

  1. HDU.4352.XHXJ's LIS(数位DP 状压 LIS)

    题目链接 \(Description\) 求\([l,r]\)中有多少个数,满足把这个数的每一位从高位到低位写下来,其LIS长度为\(k\). \(Solution\) 数位DP. 至于怎么求LIS, ...

  2. HDU 4352 XHXJ's LIS 数位dp lis

    目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...

  3. $HDU$ 4352 ${XHXJ}'s LIS$ 数位$dp$

    正解:数位$dp$+状压$dp$ 解题报告: 传送门! 题意大概就是港,给定$[l,r]$,求区间内满足$LIS$长度为$k$的数的数量,其中$LIS$的定义并不要求连续$QwQ$ 思路还算有新意辣$ ...

  4. hdu 4352 XHXJ's LIS 数位dp+状态压缩

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...

  5. HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)

    题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量. 析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量 ...

  6. hdu 4352 XHXJ's LIS 数位DP+最长上升子序列

    题目描述 #define xhxj (Xin Hang senior sister(学姐))If you do not know xhxj, then carefully reading the en ...

  7. hdu 4352 XHXJ's LIS 数位DP

    数位DP!dp[i][j][k]:第i位数,状态为j,长度为k 代码如下: #include<iostream> #include<stdio.h> #include<a ...

  8. HDU 4352 - XHXJ's LIS - [数位DP][LIS问题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  9. HDU 4352 XHXJ's LIS ★(数位DP)

    题意 求区间[L,R]内满足各位数构成的数列的最长上升子序列长度为K的数的个数. 思路 一开始的思路是枚举数位,最后判断LIS长度.但是这样的话需要全局数组存枚举的各位数字,同时dp数组的区间唯一性也 ...

随机推荐

  1. Python解释器和IPython

    目录 简介 Python解释器 IPython 魔法函数 运行和编辑 Debug History 运行系统命令 简介 今天给大家介绍一下Python的一个功能非常强大的解释器IPython.虽然Pyt ...

  2. EGADS框架处理流程分析

    最近在搞异常检测相关的工作,因此调研了业界常用的异常检测系统.通过查阅相关资料,发现业界对雅虎开源的EGADS系统评价比较高,其git项目已有980个star.这周阅读了项目的源码,梳理了系统框架的基 ...

  3. mysql过滤复制

  4. 【Software Test】Basic Of ST

    文章目录 Learning Objective Introduction Software Applications Before Software Testing What is testing? ...

  5. 【Oracle】如果有一个Oracle中的用户,想知道他有什么权限,怎么查看?

    假如那到了一个新用户,test,想查看这test的所有权限都有哪些,可以这么操作 登录到test用户上,执行下面的SQL 1.查看test用户被赋予了哪些角色. select * from user_ ...

  6. leetcode 1593. 拆分字符串使唯一子字符串的数目最大(DFS,剪枝)

    题目链接 leetcode 1593. 拆分字符串使唯一子字符串的数目最大 题意: 给你一个字符串 s ,请你拆分该字符串,并返回拆分后唯一子字符串的最大数目. 字符串 s 拆分后可以得到若干 非空子 ...

  7. DOS的FOR命令用法总结

    鉴于dos自带的关于for命令的帮助信息看起来太简单,自己总结了一下,并增加了必要的实例,以备日后自己查阅.其中一些地方可能存在理解错误,敬请指出. [转发请注明出处]

  8. Electron实用技巧-开机启动时隐藏主窗口,只显示系统托盘

    # 1 在桌面软件中,开机自启动是很常见的功能,在electron中也提供了很好的支持,以下是主要代码: //应用是否打包if (app.isPackaged) {  //设置开机启动  app.se ...

  9. js reduce数组转对象

    借鉴:https://juejin.im/post/5cfcaa7ae51d45109b01b161#comment这位大佬的处理方法很妙,但是我一眼看过去没有明白,细细琢磨了下,终于明白了 1 co ...

  10. layui表格前端格式化时间戳字段

    layui.use(['util','table'], function(){   var table = layui.table;   var util = layui.util;   //... ...