Problem Description
#define xhxj (Xin Hang senior sister(学姐)) 
If you do not know xhxj, then carefully reading the entire description is very important.
As the strongest fighting force in UESTC, xhxj grew up in Jintang, a border town of Chengdu.
Like many god cattles, xhxj has a legendary life: 
2010.04, had not yet begun to learn the algorithm, xhxj won the second prize in the university contest. And in this fall, xhxj got one gold medal and one silver medal of regional contest. In the next year's summer, xhxj was invited to Beijing to attend the astar onsite. A few months later, xhxj got two gold medals and was also qualified for world's final. However, xhxj was defeated by zhymaoiing in the competition that determined who would go to the world's final(there is only one team for every university to send to the world's final) .Now, xhxj is much more stronger than ever,and she will go to the dreaming country to compete in TCO final.
As you see, xhxj always keeps a short hair(reasons unknown), so she looks like a boy( I will not tell you she is actually a lovely girl), wearing yellow T-shirt. When she is not talking, her round face feels very lovely, attracting others to touch her face gently。Unlike God Luo's, another UESTC god cattle who has cool and noble charm, xhxj is quite approachable, lively, clever. On the other hand,xhxj is very sensitive to the beautiful properties, "this problem has a very good properties",she always said that after ACing a very hard problem. She often helps in finding solutions, even though she is not good at the problems of that type.
Xhxj loves many games such as,Dota, ocg, mahjong, Starcraft 2, Diablo 3.etc,if you can beat her in any game above, you will get her admire and become a god cattle. She is very concerned with her younger schoolfellows, if she saw someone on a DOTA platform, she would say: "Why do not you go to improve your programming skill". When she receives sincere compliments from others, she would say modestly: "Please don’t flatter at me.(Please don't black)."As she will graduate after no more than one year, xhxj also wants to fall in love. However, the man in her dreams has not yet appeared, so she now prefers girls.
Another hobby of xhxj is yy(speculation) some magical problems to discover the special properties. For example, when she see a number, she would think whether the digits of a number are strictly increasing. If you consider the number as a string and can get a longest strictly increasing subsequence the length of which is equal to k, the power of this number is k.. It is very simple to determine a single number’s power, but is it also easy to solve this problem with the numbers within an interval? xhxj has a little tired,she want a god cattle to help her solve this problem,the problem is: Determine how many numbers have the power value k in [L,R] in O(1)time.
For the first one to solve this problem,xhxj will upgrade 20 favorability rate。
 
Input
First a integer T(T<=10000),then T lines follow, every line has three positive integer L,R,K.(
0<L<=R<263-1 and 1<=K<=10).
 
Output
For each query, print "Case #t: ans" in a line, in which t is the number of the test case starting from 1 and ans is the answer.
 
Sample Input
1
123 321 2
 
Sample Output
Case #1: 139

题意:求l到r中数字满足 严格上升的个数为k的数 的个数

思路:因为是求严格上升 所以数组很小 而且数字的大小只有1~9 所以可以用二进制来标记LIS数组(了解nlognLIS的求法) 再开一维是记录k 方便记忆化

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
int dir[2][2]={1,0 ,0,1};
int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1};
const int inf=0x3f3f3f3f;
ll dp[20][1<<10][11]; //i位数 最大上升子序列状态为s 所求个数为k
int bits[20];
ll l,r,k;
ll update(int num,int x){ //维护LIS数组
bool f=0;
for(int i=x;i<10;i++){
if(num&(1<<i)){
f=1;
num=num^(1<<i);
break;
}
}
return num|(1<<x);
}
ll getnum(int num){ //计算1的个数
ll cnt=0;
for(int i=0;i<10;i++){
if(num&(1<<i)) ++cnt;
}
return cnt;
}
ll dfs(int len,int num,bool have0,bool ismax){
if(!len) return getnum(num)==k;
if(!ismax&&dp[len][num][k]>=0) return dp[len][num][k];
int up=ismax?bits[len]:9;
ll cnt=0;
for(int i=0;i<=up;i++){
if(have0&&i==0){
cnt+=dfs(len-1,num,have0,ismax&&i==up);
}else{
cnt+=dfs(len-1,update(num,i),have0&&(i==0),ismax&&i==up);
}
}
if(!ismax) dp[len][num][k]=cnt;
return cnt;
}
ll solve(ll x){
int len=0;
while(x){
bits[++len]=x%10;
x/=10;
}
return dfs(len,0,1,1);
}
int main(){
//ios::sync_with_stdio(false);
int t;
scanf("%d",&t);
int w=0;
memset(dp,-1,sizeof(dp));
while(t--){
scanf("%lld%lld%lld",&l,&r,&k);
printf("Case #%d: %lld\n",++w,solve(r)-solve(l-1));
}
return 0;
}

hdu 4352 XHXJ's LIS(数位dp+状压)的更多相关文章

  1. HDU.4352.XHXJ's LIS(数位DP 状压 LIS)

    题目链接 \(Description\) 求\([l,r]\)中有多少个数,满足把这个数的每一位从高位到低位写下来,其LIS长度为\(k\). \(Solution\) 数位DP. 至于怎么求LIS, ...

  2. HDU 4352 XHXJ's LIS 数位dp lis

    目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...

  3. $HDU$ 4352 ${XHXJ}'s LIS$ 数位$dp$

    正解:数位$dp$+状压$dp$ 解题报告: 传送门! 题意大概就是港,给定$[l,r]$,求区间内满足$LIS$长度为$k$的数的数量,其中$LIS$的定义并不要求连续$QwQ$ 思路还算有新意辣$ ...

  4. hdu 4352 XHXJ's LIS 数位dp+状态压缩

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...

  5. HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)

    题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量. 析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量 ...

  6. hdu 4352 XHXJ's LIS 数位DP+最长上升子序列

    题目描述 #define xhxj (Xin Hang senior sister(学姐))If you do not know xhxj, then carefully reading the en ...

  7. hdu 4352 XHXJ's LIS 数位DP

    数位DP!dp[i][j][k]:第i位数,状态为j,长度为k 代码如下: #include<iostream> #include<stdio.h> #include<a ...

  8. HDU 4352 - XHXJ's LIS - [数位DP][LIS问题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  9. HDU 4352 XHXJ's LIS ★(数位DP)

    题意 求区间[L,R]内满足各位数构成的数列的最长上升子序列长度为K的数的个数. 思路 一开始的思路是枚举数位,最后判断LIS长度.但是这样的话需要全局数组存枚举的各位数字,同时dp数组的区间唯一性也 ...

随机推荐

  1. vue的路由组件挂载。

    vue通过多种方式可以将组件挂载到一个页面上.挂载方式有四种.其实也并不止四种.这里呢就简单的提四种方式去怎样挂载组件. 第一种就是作为标签形式挂载.前面也提到. 后面的就是一般的挂载组件和按需挂载组 ...

  2. Faceto_object_programdesign

    一面向对象程序设计思想 1 和面向过程关注点不同 过程: 程序执行流程和逻辑 (局部功能) 对象: 程序中的对象 (程序结构) 2 对象 现实世界中的实体和事物 可以看成是一种具有自身属性和功能的构件 ...

  3. CAN总线采样点测试

    采样点是什么? 采样点是接受节点判断信号逻辑的位置,CAN通讯属于异步通讯.需要通过不断的重新同步才能保证收发节点的采样准确. 若采样点太靠前,则因为线缆原因,DUT外发报文尚未稳定,容易发生采样错误 ...

  4. IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY! Someone could be eavesdropping on you right now (man-in-the-middle attack)! It is also possible that a host key has just been changed. The fingerp

    [root@k8s-master ~]# scp /etc/sysctl.d/k8s.conf root@192.168.30.23:/etc/sysctl.d/k8s.conf@@@@@@@@@@@ ...

  5. 详解MySQL执行事务的语法和流程

    摘要:MySQL 提供了多种存储引擎来支持事务. MySQL 提供了多种存储引擎来支持事务.支持事务的存储引擎有 InnoDB 和 BDB,其中,InnoDB 存储引擎事务主要通过 UNDO 日志和 ...

  6. python--or 和 and 表达式

    or表达式: 两边为一真一假,返回真: 两边都为假,返回右边: 两边都为真,返回左边: and表达式: 两边为一真一假,返回假: 两边都为假,返回左边: 两边都为真,返回右边:

  7. 集成多种协议、用于 USBC 端口的快充协议芯片IP2723

    1. 特性  快充规格  集成 QC4/QC4+输出快充协议 - 兼容 QC2.0/QC3.0 - 支持 Class B 电压等级  集成 FCP 输出快充协议  集成 SCP 输出快充协议  集成 ...

  8. 关于springboot2.X使用外部tomcat服务器进行部署的操作详细步骤

    1.修改pom.xml文件(4个地方) ①<packaging>war</packaging>将其中的jar该为war ②<dependency> <grou ...

  9. apscheduler(定时任务) 基于redis持久化配置操作

    apscheduler(定时任务) 基于redis持久化配置操作 安装模块 pip install apscheduler 导入模块配置 ## 配置redis模块 from apscheduler.j ...

  10. C#+Layui开发后台管理系统

    ​我是笑林新记,分享一下我一套C#开发的后台管理系统,希望对大家有帮助!欢迎关注微信公众号:笑林新记   后台开发语言:C# 前端框架:layui   前天用毛笔笔画制作了一个毛笔字效果的Logo,主 ...