Codeforce 999 D. Equalize the Remainders 解析(思維)

今天我們來看看CF999D

題目連結

題目

略,請直接看原題

前言

感覺要搞個類似\(stack\)的東西來儲存下一個沒滿的\(\mod m\)是哪一個才能避免\(O(m^2)\)的複雜度,沒想到反過來想,儲存前一個滿出來的是什麼就可以了。

想法

首先可能會想到,先把每個\(mod\)值都儲存到一個\(vector<int> as[\_n]\)裡,然後從\(mod=0\)開始一直到\(mod=m-1\),如果當前\(mod\)的數字太多,那就找最近的下一個\(mod\)還沒滿的值填補上去。然而這樣的複雜度要\(O(m^2)\)。

我一開始是想說看怎麼樣能利用類似\(stack\)的結構,去\(O(1)\)找到對於某個\(mod=i\)來說的下一個還沒滿的\(mod\)值,但是其實如果反過來想,每次如果有多出來的\(mod\)值,就先\(push\_back\)到一個\(vector\)裡,那麼繼續遍歷\(i=0\sim m-1\),當發現一個還沒滿的\(mod\)值時,\(vector\)末端的元素一定是靠當前\(i\)最近的。

然而會發現當前未滿的\(mod=i\)有可能需要後面的\(mod>i\)來填補,於是我們遍歷\(i\)時不要只到\(m-1\),而是讓\(i=0\sim 2m-1\),如此一來問題就解決了。

程式碼:

const int _n=2e5+10;
ll t,tt,n,m,mm,k,ii,a[_n],cnt;
VI as[_n],free;
main(void) {ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n>>m;mm=m*2,k=n/m;rep(i,0,n){cin>>a[i];as[a[i]%m].pb(i);}
rep(i,0,mm){
ii=i%m;
if(SZ(as[ii])>k){
t=SZ(as[ii])-k;
rep(j,0,t)free.pb(as[ii][j]);
}
if(SZ(as[ii])<k){
t=min(SZ(free),k-SZ(as[ii]));
rep(j,SZ(free)-t,SZ(free)){
tt=a[free[j]]%m;if(tt>ii)tt-=m;
a[free[j]]+=ii-tt,cnt+=ii-tt;
}free.erase(free.end()-t,free.end());
}
}
cout<<cnt<<'\n';
rep(i,0,n)cout<<a[i]<<' '; cout<<'\n';
return 0;
}

\(free\)這個\(vector\)名稱已經存在了,需要\(\#define\ free\ [隨便一個字串]\)

標頭、模板請點Submission看

Submission

D. Equalize the Remainders 解析(思維)的更多相关文章

  1. A. Arena of Greed 解析(思維)

    Codeforce 1425 A. Arena of Greed 解析(思維) 今天我們來看看CF1425A 題目連結 題目 略,請直接看原題. 前言 明明是難度1400的題目,但總感覺不是很好寫阿, ...

  2. E. Almost Regular Bracket Sequence 解析(思維)

    Codeforce 1095 E. Almost Regular Bracket Sequence 解析(思維) 今天我們來看看CF1095E 題目連結 題目 給你一個括號序列,求有幾個字元改括號方向 ...

  3. C2. Power Transmission (Hard Edition) 解析(思維、幾何)

    Codeforce 1163 C2. Power Transmission (Hard Edition) 解析(思維.幾何) 今天我們來看看CF1163C2 題目連結 題目 給一堆點,每兩個點會造成一 ...

  4. F. Moving Points 解析(思維、離散化、BIT、前綴和)

    Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...

  5. B. Two Arrays 解析(思維)

    Codeforce 1417 B. Two Arrays 解析(思維) 今天我們來看看CF1417B 題目連結 題目 略,請直接看原題. 前言 a @copyright petjelinux 版權所有 ...

  6. C. k-Amazing Numbers 解析(思維)

    Codeforce 1417 C. k-Amazing Numbers 解析(思維) 今天我們來看看CF1417C 題目連結 題目 略,請直接看原題. 前言 我實作好慢... @copyright p ...

  7. D. Road to Post Office 解析(思維)

    Codeforce 702 D. Road to Post Office 解析(思維) 今天我們來看看CF702D 題目連結 題目 略,請直接看原題. 前言 原本想說會不會也是要列式子解或者二分搜,沒 ...

  8. C. Bank Hacking 解析(思維)

    Codeforce 796 C. Bank Hacking 解析(思維) 今天我們來看看CF796C 題目連結 題目 略,請直接看原題. 前言 @copyright petjelinux 版權所有 觀 ...

  9. B. Kay and Snowflake 解析(思維、DFS、DP、重心)

    Codeforce 685 B. Kay and Snowflake 解析(思維.DFS.DP.重心) 今天我們來看看CF685B 題目連結 題目 給你一棵樹,要求你求出每棵子樹的重心. 前言 完全不 ...

随机推荐

  1. python类,魔术方法等学习&&部分ssti常见操作知识点复习加深

    python类学习&&部分ssti常见操作知识点复习加深 在做ssti的模块注入的时候经常觉得自己python基础的薄弱,来学习一下,其实还是要多练习多背. 在python中所有类默认 ...

  2. spring:spring再总结(ioc、aop、DI等)

    IOC(Inversion of Control),即"控制反转",不是一种技术而是一种思想 1.IOC的理解 Ioc意味着将你设计好的对象交给容器控制,而不是传统的在你的对象内部 ...

  3. spark textfile rdd 日记

    批量处理模板方法, 核心处理方法为内部方法 def batchProces(sc: SparkContext, locationFlag: Int, minid: Int, maxid: Int, n ...

  4. jquery全选,全不选,反选

    前台 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.o ...

  5. SpringBoot-03-JSR303数据校验和多环境切换

    3.3 JSR303数据校验 先看如何使用 ​ Springboot中可以用@Validated来校验数据,如果数据异常则统一抛出异常,方便异常中心统一处理. ​ 这里我们写个注解让name只支持Em ...

  6. pycharm 配置 github

    今天突然想把自己的代码上传到github上去,然后就研究了下pycharm的配置. 首先呢,你得有个github的账号,然后建立一个项目. 然后打开pycharm,选择file->Setting ...

  7. ElasticSearch 索引 VS MySQL 索引

    前言 这段时间在维护产品的搜索功能,每次在管理台看到 elasticsearch 这么高效的查询效率我都很好奇他是如何做到的. 这甚至比在我本地使用 MySQL 通过主键的查询速度还快. 为此我搜索了 ...

  8. ✅Vue选择图像

    下载 Vue选择图像Vue选择图像 Vue 2.用于从列表中选择图像的组件 演示 https://mazipan.github.io/vue-select-image/ 安装 #纱 纱添加vue-se ...

  9. SpringBoot 完整学习笔记免费分享

    从0到进阶,完全系统性的学习笔记 每次我都会反复拿来观看,因为我们总会有遗漏忘记的地方,但是笔记不会. 希望大家能好好利用它,以下是笔记截图! 以上只是其中的一项部分,这份笔记可以说含金量超高,绝对会 ...

  10. IDEA设置maven修改settings.xml配置文件无法加载仓库

    作为初学者配置maven一般网上搜索.然后你就看到各种配置文件片段,首先配置镜像,然后配置仓库.完事后再IDEA里面配置下maven的路径和配置文件路径. 这些文章属实坑爹,完全没讲一个重要的配置就是 ...