问题

该文章的最新版本已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/3690 访问。

给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 行。

在杨辉三角中,每个数是它左上方和右上方的数的和。

输入: 3

输出: [1,3,3,1]

你可以优化你的算法到 O(k) 空间复杂度吗?


Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle.

Note that the row index starts from 0.



In Pascal's triangle, each number is the sum of the two numbers directly above it.

Could you optimize your algorithm to use only O(k) extra space?

Input: 3

Output: [1,3,3,1]


示例

该文章的最新版本已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/3690 访问。

public class Program {

    public static void Main(string[] args) {
var res = GetRow(4);
var res2 = GetRow2(5); ShowArray(res);
ShowArray(res2); Console.ReadKey();
} private static void ShowArray(IList<int> array) {
foreach(var num in array) {
Console.Write($"{num} ");
}
Console.WriteLine();
} private static IList<int> GetRow(int rowIndex) {
int[][] res = new int[rowIndex + 1][];
for(int i = 0; i < res.Length; i++) {
res[i] = new int[rowIndex + 1];
}
res[0][0] = 1;
for(int i = 1; i < rowIndex + 1; i++) {
res[i][0] = 1;
for(int j = 1; j < i + 1; j++) {
res[i][j] = res[i - 1][j - 1] + res[i - 1][j];
}
}
return res[rowIndex];
} private static IList<int> GetRow2(int rowIndex) {
int[] res = new int[rowIndex + 1];
res[0] = 1;
for(int i = 1; i < rowIndex + 1; i++) {
for(int j = rowIndex; j >= 1; j--) {
res[j] = res[j - 1] + res[j];
}
}
return res;
} }

以上给出2种算法实现,以下是这个案例的输出结果:

该文章的最新版本已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/3690 访问。

1 4 6 4 1
1 5 10 10 5 1

分析:

显而易见,GetRow在最坏的情况下的时间复杂度为:  ,空间复杂度也为: ;

GetRow2在最坏的情况下的时间复杂度为:  ,由于使用一维数组空间复杂度为:  。

GetRow2方法可以根据杨辉三角的对称性优化,只需计算一半即可,其实现方法留给各位看官。

C#LeetCode刷题之#119-杨辉三角 II(Pascal‘s Triangle II)的更多相关文章

  1. 算法:杨辉三角(Pascal's Triangle)

    一.杨辉三角介绍 杨辉三角形,又称帕斯卡三角形.贾宪三角形.海亚姆三角形.巴斯卡三角形,是二项式系数的一种写法,形似三角形,在中国首现于南宋杨辉的<详解九章算法>得名,书中杨辉说明是引自贾 ...

  2. Java实现 LeetCode 119 杨辉三角 II

    119. 杨辉三角 II 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 进阶: ...

  3. 【LeetCode】119. 杨辉三角 II Pascal‘s Triangle II(Python & Java)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 方法一: 空间复杂度 O ( k ∗ ( k + 1 ...

  4. LeetCode(119. 杨辉三角 II)

    问题描述 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 进阶: 你可以优化你的 ...

  5. C#LeetCode刷题之#118-杨辉三角(Pascal‘s Triangle)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3688 访问. 给定一个非负整数 numRows,生成杨辉三角的前 ...

  6. 力扣119.杨辉三角II-C语言实现

    题目 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 来源:力扣(LeetCod ...

  7. LeetCode(118):杨辉三角

    Easy! 题目描述: 给定一个非负整数 numRows,生成杨辉三角的前 numRows 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 5 输出: [ [1], [1,1] ...

  8. LeetCode 118:杨辉三角 II Pascal's Triangle II

    公众号:爱写bug(ID:icodebugs) 作者:爱写bug 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. Given a non-negative index k whe ...

  9. [LeetCode 119] - 杨辉三角形II(Pascal's Triangle II)

    问题 给出一个索引k,返回杨辉三角形的第k行. 例如,给出k = 3,返回[1, 3, 3, 1] 注意: 你可以优化你的算法使之只使用O(k)的额外空间吗? 初始思路 首先来复习复习杨辉三角形的性质 ...

  10. [Swift]LeetCode119. 杨辉三角 II | Pascal's Triangle II

    Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note t ...

随机推荐

  1. python实现图片文字提取,准确率高达99%,强无敌!!!

    上次我使用的百度AI开放平台的API接口实现图片的转化,后来有许多小伙伴都私信问我,怎么获取百度AI平台的AK和SK.为了统一回答大家的问题,今天我又使用百度API实现了一个从图片中提取文字和识别身份 ...

  2. 什么是控制反转(IoC)?什么是依赖注入(DI)?以及实现原理

    ​ IoC不是一种技术,只是一种思想,一个重要的面向对象编程的法则,它能指导我们如何设计出松耦合.更优良的程序.传统应用程序都是由我们在类内部主动创建依赖对象,从而导致类与类之间高耦合,难于测试:有了 ...

  3. 太实用了!自己动手写软件——我们的密码PJ器终于完成了

    之前我们完成了密码破解工具的界面,今天我们来看看功能实现吧. 目录 编码 提交——功能实现 开始破解——功能实现 读取密码字典 选择协议并执行破解动作 POP3协议的破解函数 IMAP协议的破解函数 ...

  4. ajax原生js封装

    不带注释的 function ajax(json) { json.type = json.type ? json.type : 'get'; json.async = json.async == fa ...

  5. 高精度进制转换(poj1220)

    常规短除法原理 高精度进制转换是对于特别大的数字来说的,当数字特别大时,难以进行除法和取余的操作,此时通过字符串模拟的办法可以解决. #include <iostream> #includ ...

  6. shell 中的${},##, %% , :- ,:+, ? 的使用

    假设我们定义了一个变量为:file=/dir1/dir2/dir3/my.file.txt 可以用${ }分别替换得到不同的值:${file#*/}:删掉第一个/ 及其左边的字符串:dir1/dir2 ...

  7. kafka笔记——入门介绍

    中文文档 目录 kafka的优势 首先几个概念 kafka的四大核心API kafka的基本术语 主题和日志(Topic和Log) 每个分区都是一个顺序的,不可变的队列,并且可以持续的添加,分区中的每 ...

  8. layui常用插件(二) 时间插件

    日期和时间 html <div class="layui-inline"> <!-- 注意:这一层元素并不是必须的 --> <input type=& ...

  9. Android Zero (基础介绍篇)

    开发Android首先你得先配置好环境,配置的文章网上一大把,这里就不重复造轮子说了,配置好JAVA下载好AndroidStudio后我们先对基本的项目结构做一下了解! 首先介绍下你必须得知道的文件夹 ...

  10. Python 为什么要有 pass 语句?

    本文出自"Python为什么"系列,请查看全部文章 关于 Python 中的pass语句,它似乎很简单(只有 4 个字母),即使是没有任何编程经验的初学者也能很快地掌握它的用法. ...