Catalan Paths

从 \((0,0)\) 走到 \((n,n)\), 每次只能向上或者向右走,不能穿过直线 \(y=x\) 的方案数。

设从 \((0,0)\) 到 \((n,n)\) 的路径集合为 \(S\), 从 \((1,0)\) 到 \((n+1,n)\) 的路经集合 \(S^+\), 从 \((0,1)\) 到 \((n+1,n)\) 的路经集合 \(S^-\), 显然有 \(|S^+|=\binom{2n}{n},|S^-|=\binom{2n}{n-1}\)。 对于一条路径 \(W\in S^+\cup S^-\),让 \(\phi W\) 表示一条路径,如果 \(W\) 没有穿过 \(y=x\), 那么 \(\phi W=W\),否则 \(\phi W\) 表示 \(W\) 关于 \(W\) 与 \(y=x\) 的第一个交点的对称路径。

显然对于任意一条路径 \(W\in S^-\), 它都会穿过 \(y=x\), 并且 \(\phi W\in S^+\), 所以 \(C_n=\binom{2n}{n}-\binom{2n}{n-1}=\frac{\binom{2n}n}{n+1}\)


Vandermonde Determinant

\(\det\begin{gathered}\begin{pmatrix} x_1^{n-1} & x_2^{n-1} & ... & x_n^{n-1} \\ x_1^{n-2} & x_2^{n-2} & ... & x_n^{n-2} \\ ... \\ x_1 & x_2 & ... & x_n \\ 1 & 1 & ... & 1 \end{pmatrix}\end{gathered}=\prod\limits_{1\le i<j\le n}(x_i-x_j)\)

Proof.

\(\text{The left-hand side}\colon\sum\limits_{\sigma\in S(n)}(\text{sign }\sigma)x_{\sigma(1)}^{n-1}x_{\sigma(2)}^{n-2}\cdots x_{\sigma(n)}^0\)

\(\text{The right-hand side}\colon(-1)^mx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}\ (\sum\limits_{i=1}^na_i=\binom{n}{2},m=\#\{j\colon x_j\text{ is taken from }x_i-x_j\})\)

考虑建立竞赛图 \(T\), 对于一条边 \(e=(u,v)\) 我们称 \(u\) 是赢家,并定义 \(e\) 的权重:\(w(e)=x_u\text{ with sign }e=\begin{cases}1 & u<v\\-1 & u>v\end{cases}\)

再定义 \(w(T)=\prod\limits_{e\in T}w(e),\text{sign }T=\prod\limits_{e\in T}\text{ sign }e\)

那显然就有 \(\prod\limits_{1\le i<j\le n}=\sum\limits_{T}(\text{sign }T)w(T)\)

从另一个方面也很好解释为啥这两个很容易能看成相等的,因为竞赛图个数和 \(\prod\limits_{1\le i<j\le n}\) 拆开之后的项数都是 \(2^{\binom{n}{2}}\)

于是现在只需要建立竞赛图与行列式的关系。

首先考虑所有无环的竞赛图,显然可以给 \(1,2...n\) 排一个序构成排列 \(\sigma\), 容易观察到 \(w(T_{\sigma})=x_{\sigma(1)}^{n-1}x_{\sigma(2)}^{n-2}\cdots x_{\sigma(n)^0},\text{ sign }T_{\sigma}=(-1)^{\text{inv }\sigma}=\text{sign }\sigma\)

所以有 \(\det=\sum\limits_{\sigma\in S(n)}(\text{sign }\sigma)w(T_{\sigma})\)

现在考虑想办法过滤掉有环的竞赛图,让集合 \(S\) 表示所有有环的竞赛图集合, \(S^+=\{T\in S\colon \text{sign }T=1\},S^-=\{T\in S\colon \text{sign }T=-1\}\)

对于一个有环的竞赛图 \(T\),显然会存在一些点对使得其入度相同,我们找出所有点对中最小的点 \(i_0\) 和与 \(i_0\) 入度相同的最小的点 \(j_0\), 那么对于一个点 \(k\not= i_0, j_0\), 不妨设 \(i_0\rightarrow j_0\),那么三元组 \(i_0,j_0,k\) 之间的连边关系只可能有下面四种情况:



显然有 \(\#\text{II}=\#\text I + 1\)

考虑设 \(\phi T\) 表示图 \(T\) 将边 \((i_0,j_0)\) 反向后得到的新图,显然有 \(\text{sign }T=-\text{sign }\phi T,w(T)=w(\phi T)\),且一个在 \(S^+\) 中,一个在 \(S^{-}\) 中,于是这些图的贡献会被抵消掉,故原式得证.


The Pfaffian

称对于集合 \(\{1,2...n\}\) 的任意一个两两划分为在 \(\{1,2...n\}\)上的一个匹配 \(\mu\),写作 \(\mu=i_1j_1,i_2j_2,...,i_{n/2}j_{n/2}\text{ with }i_k<j_k\text{ for all }k\),对于一个斜对称矩阵 \(A\),我们记一个符号 \(a_{\mu}=a_{i_1j_1}a_{i_2j_2}\cdots a_{i_{n/2}j_{n/2}}\)

为了定义 \(\mu\) 的符号,考虑画图列出 \(1,2...;\#\mu\) 表示匹配交叉的数量,并且 \(\text{sign }\mu=(-1)^{\#\mu}\)



对于这个矩阵 \(A\),我们定义 \(pfaffian\text{ Pf}(A)=\sum\limits_{\mu}(\text{sign }\mu)a_{\mu}\)

那么有定理 \(\det A=[\text{Pf}(A)]^2\)

Proof.

首先还是考虑行列式的常见形式 \(\det A=\sum\limits_{\sigma\in S(n)}(\text{sign }\sigma)a_{\sigma}\ (a_{\sigma}=a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)})\)

定义 \(S\) 是所有排列中至少包含一个奇环的排列的集合。对于 \(\sigma\in S,\text{let }\sigma=\sigma_1\sigma_2\cdots\sigma_t\) 为其环分解,其中 \(\sigma_1\) 是所有奇环中最小标号所在的奇环,然后定义

显然除了 \(\sigma_1=(k)\) 的情况有 \(a_{\sigma}=-a_{\sigma'},(\text{sign }\sigma)a_{\sigma}=-(\text{sign }\sigma')a_{\sigma'}\), 而对于 \(\sigma_1=(k)\) 的情况,显然有 \(a_{\sigma}=0\)。

于是可以获得结论:\(\det A=\sum\limits_{\sigma\in E}(\text{sign }\sigma)a_{\sigma}\),其中 \(E\in S(n)\) 是所有只包含偶环的排列。

要证明定理,需要找到一个 \((\mu_1,\mu_2)\) 到 \(\sigma\in E\) 的双射关系 \(\phi\) 使得 \((\text{sign }\mu_1)a_{\mu_1}\cdot (\text{sign }\mu_2)a_{\mu_2}=(\text{sign }\sigma)a_{\sigma}\),这里简单举一个例子:



先不考虑符号的问题观察一番。

考虑正向拼凑 \(\sigma\), 考虑如下过程:每次选出未访问过的最小标号点,然后依次沿着 \(\mu1,\mu2\) 中的匹配边走,最后一定会走出若干个偶环。

考虑反向求 \(\mu1,\mu2\) ,考虑如下过程:每次选一个偶环,从上面的最小标号点开始依次把边划分给 \(\mu1,\mu2\)。

现在就只用考虑符号是否能对上。

假设 \(\phi(\mu_1,\mu_2)=(-1)^{e(\sigma)}a_{\sigma},e_(\sigma)=\#\{i\colon i>\sigma(i)\}\)

令 \(\sigma\) 的环分解是 \(\sigma_1\sigma_2\cdots\sigma_t;\) 那么 \(\text{sign }\sigma=(-1)^t\)

所以只需要证明 \(\text{sign }\mu_1\cdot\text{sign }\mu_2=(-1)^{e(\sigma)+t}\) 即 \(\#\mu_1+\#\mu_2-e(\sigma)\equiv t\ (\text{mod 2})\)

容易证明,对于这个环分解,如果我们交换 \(i,i+1\) 的位置,得到的 \(\#\mu_1'+\#\mu_2'-e(\sigma)'\) 和 \(\#\mu_1+\#\mu_2-e(\sigma)\) 奇偶性相同,故可以把 \(\sigma\) 经过多次交换变成



把匹配画出来显然长这样



显然对于这个东西, \(\#\mu_1'=\#\mu_2'=0,e(\sigma)'=t\) ,故原定理得证.

The Involution Principle的更多相关文章

  1. Cognition math based on Factor Space (2016.05)

    Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...

  2. Atitit.软件开发的几大规则,法则,与原则Principle v3

    Atitit.软件开发的几大规则,法则,与原则Principle  v31.1. 修改历史22. 设计模式六大原则22.1. 设计模式六大原则(1):单一职责原则22.2. 设计模式六大原则(2):里 ...

  3. C#设计模式系列:开闭原则(Open Close Principle)

    1.开闭原则简介 开闭原则对扩展开放,对修改关闭,开闭原则是面向对象设计中可复用设计的基石. 2.开闭原则的实现 实现开闭原则的关键就在于抽象,把系统的所有可能的行为抽象成一个抽象底层,这个抽象底层规 ...

  4. 开放封闭原则(Open Closed Principle)

    在面向对象的设计中有很多流行的思想,比如说 "所有的成员变量都应该设置为私有(Private)","要避免使用全局变量(Global Variables)",& ...

  5. 最少知识原则(Least Knowledge Principle)

    最少知识原则(Least Knowledge Principle),或者称迪米特法则(Law of Demeter),是一种面向对象程序设计的指导原则,它描述了一种保持代码松耦合的策略.其可简单的归纳 ...

  6. 接口分离原则(Interface Segregation Principle)

    接口分离原则(Interface Segregation Principle)用于处理胖接口(fat interface)所带来的问题.如果类的接口定义暴露了过多的行为,则说明这个类的接口定义内聚程度 ...

  7. 依赖倒置原则(Dependency Inversion Principle)

    很多软件工程师都多少在处理 "Bad Design"时有一些痛苦的经历.如果发现这些 "Bad Design" 的始作俑者就是我们自己时,那感觉就更糟糕了.那么 ...

  8. 里氏替换原则(Liskov Substitution Principle)

    开放封闭原则(Open Closed Principle)是构建可维护性和可重用性代码的基础.它强调设计良好的代码可以不通过修改而扩展,新的功能通过添加新的代码来实现,而不需要更改已有的可工作的代码. ...

  9. 单一职责原则(Single Responsibility Principle)

    单一职责原则(SRP:The Single Responsibility Principle) 一个类应该有且只有一个变化的原因. There should never be more than on ...

随机推荐

  1. Django框架10 /sweetalert插件、django事务和锁、中间件、django请求生命周期

    Django框架10 /sweetalert插件.django事务和锁.中间件.django请求生命周期 目录 Django框架10 /sweetalert插件.django事务和锁.中间件.djan ...

  2. Django框架06 /orm多表操作

    Django框架06 /orm多表操作 目录 Django框架06 /orm多表操作 1. admin相关操作 2. 创建模型 3. 增加 4. 删除 5. 修改 6. 基于对象的跨表查询 7. 基于 ...

  3. css :clip rect 正确的使用方法

    CSS clip 是一个极少使用,但又确实存在的属性. 而且,它其实在CSS2时代就有了. w3school 上有这么一句话: clip 属性剪裁绝对定位元素. 也就是说,只有 position:ab ...

  4. 彻底禁用咱的Win10电脑更新

    一.关闭Windows Update服务 右键“此电脑”>“管理” 找到Windows Update服务双击打开,服务状态>停止,服务类型>禁用 “恢复”选项卡,三项全部选择“无操作 ...

  5. p46_IPv4地址

    IP地址:全世界唯一的32位/4字节标识符,标识路由器主机的接口. IP地址::={<网络号>,<主机号>} 图中有6个子网 比如222.1.3.0是网络号,3是主机号,222 ...

  6. Android Studio(Kotlin)之RecyclerView

    RecyclerView应该是ListView的增强版. RecyclerView与ListView的区别(我认为的): RecyclerView的性能比ListView高 RecyclerView支 ...

  7. 题解 洛谷 P5443 【[APIO2019]桥梁】

    考虑若只有查询操作,那么就可以构造\(Kruskal\)重构树,然后在线询问了,也可以更简单的把询问离线,把询问和边都按权值从大到小排序,然后双指针依次加入对于当前询问合法的边,用并查集维护每个点的答 ...

  8. SpringBoot + Spring Cloud Consul 服务注册和发现

    什么是Consul Consul 是 HashiCorp 公司推出的开源工具,用于实现分布式系统的服务发现与配置.与其它分布式服务注册与发现的方案,Consul 的方案更"一站式" ...

  9. vector STL

    高呼“STL大法好!!” vector 是一个不限定容量的数组. 先说一下头文件 #include<vector> 1.声明 vector<int>v1;//vector元素为 ...

  10. 因为不知道Java的CopyOnWriteArrayList,面试官让我回去等通知

    先看再点赞,给自己一点思考的时间,微信搜索[沉默王二]关注这个靠才华苟且的程序员.本文 GitHub github.com/itwanger 已收录,里面还有一线大厂整理的面试题,以及我的系列文章. ...