主成分分析PCA数据降维原理及python应用(葡萄酒案例分析)
目录
主成分分析(PCA)——以葡萄酒数据集分类为例
1、认识PCA
(1)简介
数据降维的一种方法是通过特征提取实现,主成分分析PCA就是一种无监督数据压缩技术,广泛应用于特征提取和降维。
换言之,PCA技术就是在高维数据中寻找最大方差的方向,将这个方向投影到维度更小的新子空间。例如,将原数据向量x,通过构建 维变换矩阵 W,映射到新的k维子空间,通常(
)。
原数据d维向量空间 经过
,得到新的k维向量空间
.
第一主成分有最大的方差,在PCA之前需要对特征进行标准化,保证所有特征在相同尺度下均衡。
(2)方法步骤
- 标准化d维数据集
- 构建协方差矩阵。
- 将协方差矩阵分解为特征向量和特征值。
- 对特征值进行降序排列,相应的特征向量作为整体降序。
- 选择k个最大特征值的特征向量,
。
- 根据提取的k个特征向量构造投影矩阵
。
- d维数据经过
变换获得k维。
下面使用python逐步完成葡萄酒的PCA案例。
2、提取主成分
下载葡萄酒数据集wine.data到本地,或者到时在加载数据代码是从远程服务器获取,为了避免加载超时推荐下载本地数据集。
来看看数据集长什么样子!一共有3类,标签为1,2,3 。每一行为一组数据,由13个维度的值表示,我们将它看成一个向量。

开始加载数据集。
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt # load data
df_wine = pd.read_csv('D:\\PyCharm_Project\\maching_learning\\wine_data\\wine.data', header=None) # 本地加载,路径为本地数据集存放位置
# df_wine=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data',header=None)#服务器加载
下一步将数据按7:3划分为training-data和testing-data,并进行标准化处理。
# split the data,train:test=7:3
x, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, stratify=y, random_state=0) # standardize the feature 标准化
sc = StandardScaler()
x_train_std = sc.fit_transform(x_train)
x_test_std = sc.fit_transform(x_test)
这个过程可以自行打印出数据进行观察研究。
接下来构造协方差矩阵。 维协方差对称矩阵,实际操作就是计算不同特征列之间的协方差。公式如下:
公式中,jk就是在矩阵中的行列下标,i表示第i行数据,分别为特征列 j,k的均值。最后得到的协方差矩阵是13*13,这里以3*3为例,如下:
下面使用numpy实现计算协方差并提取特征值和特征向量。
# 构造协方差矩阵,得到特征向量和特征值
cov_matrix = np.cov(x_train_std.T)
eigen_val, eigen_vec = np.linalg.eig(cov_matrix)
# print("values\n ", eigen_val, "\nvector\n ", eigen_vec)# 可以打印看看

3、主成分方差可视化
首先,计算主成分方差比率,每个特征值方差与特征值方差总和之比:
代码实现:
# 解释方差比
tot = sum(eigen_val) # 总特征值和
var_exp = [(i / tot) for i in sorted(eigen_val, reverse=True)] # 计算解释方差比,降序
# print(var_exp)
cum_var_exp = np.cumsum(var_exp) # 累加方差比率
plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='独立解释方差') # 柱状 Individual_explained_variance
plt.step(range(1, 14), cum_var_exp, where='mid', label='累加解释方差') # Cumulative_explained_variance
plt.ylabel("解释方差率")
plt.xlabel("主成分索引")
plt.legend(loc='right')
plt.show()
可视化结果看出,第一二主成分占据大部分方差,接近60%。

4、特征变换
这一步需要构造之前讲到的投影矩阵,从高维d变换到低维空间k。
先将提取的特征对进行降序排列:
# 特征变换
eigen_pairs = [(np.abs(eigen_val[i]), eigen_vec[:, i]) for i in range(len(eigen_val))]
eigen_pairs.sort(key=lambda k: k[0], reverse=True) # (特征值,特征向量)降序排列
从上步骤可视化,选取第一二主成分作为最大特征向量进行构造投影矩阵。
w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) # 降维投影矩阵W
13*2维矩阵如下:

这时,将原数据矩阵与投影矩阵相乘,转化为只有两个最大的特征主成分。
x_train_pca = x_train_std.dot(w)
5、数据分类结果
使用 matplotlib进行画图可视化,可见得,数据分布更多在x轴方向(第一主成分),这与之前方差占比解释一致,这时可以很直观区别3种不同类别。
代码实现:
color = ['r', 'g', 'b']
marker = ['s', 'x', 'o']
for l, c, m in zip(np.unique(y_train), color, marker):
plt.scatter(x_train_pca[y_train == l, 0],
x_train_pca[y_train == l, 1],
c=c, label=l, marker=m)
plt.title('Result')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.legend(loc='lower left')
plt.show()

本案例介绍PCA单个步骤和实现过程,一点很重要,PCA是无监督学习技术,它的分类没有使用到样本标签,上面之所以看出3类不同标签,是后来画图时候自行添加的类别区分标签。
6、完整代码

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt def main():
# load data
df_wine = pd.read_csv('D:\\PyCharm_Project\\maching_learning\\wine_data\\wine.data', header=None) # 本地加载
# df_wine=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data',header=None)#服务器加载 # split the data,train:test=7:3
x, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, stratify=y, random_state=0) # standardize the feature 标准化单位方差
sc = StandardScaler()
x_train_std = sc.fit_transform(x_train)
x_test_std = sc.fit_transform(x_test)
# print(x_train_std) # 构造协方差矩阵,得到特征向量和特征值
cov_matrix = np.cov(x_train_std.T)
eigen_val, eigen_vec = np.linalg.eig(cov_matrix)
# print("values\n ", eigen_val, "\nvector\n ", eigen_vec) # 解释方差比
tot = sum(eigen_val) # 总特征值和
var_exp = [(i / tot) for i in sorted(eigen_val, reverse=True)] # 计算解释方差比,降序
# print(var_exp)
# cum_var_exp = np.cumsum(var_exp) # 累加方差比率
# plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
# plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='独立解释方差') # 柱状 Individual_explained_variance
# plt.step(range(1, 14), cum_var_exp, where='mid', label='累加解释方差') # Cumulative_explained_variance
# plt.ylabel("解释方差率")
# plt.xlabel("主成分索引")
# plt.legend(loc='right')
# plt.show() # 特征变换
eigen_pairs = [(np.abs(eigen_val[i]), eigen_vec[:, i]) for i in range(len(eigen_val))]
eigen_pairs.sort(key=lambda k: k[0], reverse=True) # (特征值,特征向量)降序排列
# print(eigen_pairs)
w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) # 降维投影矩阵W
# print(w)
x_train_pca = x_train_std.dot(w)
# print(x_train_pca)
color = ['r', 'g', 'b']
marker = ['s', 'x', 'o']
for l, c, m in zip(np.unique(y_train), color, marker):
plt.scatter(x_train_pca[y_train == l, 0],
x_train_pca[y_train == l, 1],
c=c, label=l, marker=m)
plt.title('Result')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.legend(loc='lower left')
plt.show() if __name__ == '__main__':
main()
总结:
本案例介绍PCA步骤和实现过程,单步进行是我更理解PCA内部实行的过程,主成分分析PCA作为一种无监督数据压缩技术,学习之后更好掌握数据特征提取和降维的实现方法。记录学习过程,不仅能让自己更好的理解知识,而且能与大家共勉,希望我们都能有所帮助!
我的博客园:
我的CSDN:原创 PCA数据降维原理及python应用(葡萄酒案例分析)
主成分分析PCA数据降维原理及python应用(葡萄酒案例分析)的更多相关文章
- LDA线性判别分析原理及python应用(葡萄酒案例分析)
目录 线性判别分析(LDA)数据降维及案例实战 一.LDA是什么 二.计算散布矩阵 三.线性判别式及特征选择 四.样本数据降维投影 五.完整代码 结语 一.LDA是什么 LDA概念及与PCA区别 LD ...
- [机器学习]-PCA数据降维:从代码到原理的深入解析
&*&:2017/6/16update,最近几天发现阅读这篇文章的朋友比较多,自己阅读发现,部分内容出现了问题,进行了更新. 一.什么是PCA:摘用一下百度百科的解释 PCA(Prin ...
- 深入学习主成分分析(PCA)算法原理(Python实现)
一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼 ...
- 机器学习--主成分分析(PCA)算法的原理及优缺点
一.PCA算法的原理 PCA(principle component analysis),即主成分分析法,是一个非监督的机器学习算法,是一种用于探索高维数据结构的技术,主要用于对数据的降维,通过降维可 ...
- 【Python代码】TSNE高维数据降维可视化工具 + python实现
目录 1.概述 1.1 什么是TSNE 1.2 TSNE原理 1.2.1入门的原理介绍 1.2.2进阶的原理介绍 1.2.2.1 高维距离表示 1.2.2.2 低维相似度表示 1.2.2.3 惩罚函数 ...
- 主成分分析 (PCA) 与其高维度下python实现(简单人脸识别)
Introduction 主成分分析(Principal Components Analysis)是一种对特征进行降维的方法.由于观测指标间存在相关性,将导致信息的重叠与低效,我们倾向于用少量的.尽可 ...
- PCA数据降维
Principal Component Analysis 算法优缺点: 优点:降低数据复杂性,识别最重要的多个特征 缺点:不一定需要,且可能损失有用的信息 适用数据类型:数值型数据 算法思想: 降维的 ...
- 初识PCA数据降维
PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵. 一.预备知识 1.1 协方差分析 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这 ...
- 运用sklearn进行主成分分析(PCA)代码实现
基于sklearn的主成分分析代码实现 一.前言及回顾 二.sklearn的PCA类介绍 三.分类结果区域可视化函数 四.10行代码完成葡萄酒数据集分类 五.完整代码 六.总结 基于sklearn的主 ...
随机推荐
- ASP.NET Core静态文件处理源码探究
前言 静态文件(如 HTML.CSS.图像和 JavaScript)等是Web程序的重要组成部分.传统的ASP.NET项目一般都是部署在IIS上,IIS是一个功能非常强大的服务器平台,可以直接 ...
- git分支间切换注意点和bug分支的处理
目录 备注: 知识点 记一次分支合并问题状况 从分支点开始,不同分支修改工作区的内容(不添加到暂存区和提交),切换分支,工作区的内容是一样的. 必须在提交或者暂存当前暂存区的状态后,再切换或合并分支 ...
- python基础算法
一.简介 定义和特征 定义:算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时 ...
- 题解 CF786B 【Legacy】
本题要求我们支持三种操作: ① 点向点连边. ② 点向区间连边. ③ 区间向点连边. 然后跑最短路得出答案. 考虑使用线段树优化建图. 建两颗线段树,入树和出树,每个节点为一段区间的原节点集合.入树内 ...
- wpf中实现快捷键
<Window.InputBindings> <KeyBinding Gesture="Ctrl+Alt+Q" Command="{Binding Yo ...
- 如何导入spring 的jar包到eclips
https://www.cnblogs.com/xxuan/p/6949640.html
- android 文件读写权限的设定
读取本地文件的权限问题 2016年08月15日 21:41:30 阅读数:2520 在一个音乐app过程中需要读取手机本地内存卡中的音乐文件并可以播放,具体遇到的问题如下:工程没有错误,运行出现以下信 ...
- python可变与不可变数据类型+深浅拷贝
转自:https://www.cnblogs.com/miaomiaokaixin/p/11497813.html 一:学习内容 python3中六种数据类型 python赋值 python浅拷贝 p ...
- LQB2013A03振兴中华
最近状态出了点问题呜呜呜,可能是天有点热吧加上有一点点不太舒服,,,稳住啊! 明显一个递归(但是就是不会写) 递归:(一般这种找有多少个的题,返回值都是int) 首先找变化的东西当作参数.(本题是坐标 ...
- Redis一站式管理平台工具,支持集群创建,管理,监控,报警
简介 Redis Manager 是 Redis 一站式管理平台,支持集群的创建.管理.监控和报警. 集群创建:包含了三种方式 Docker.Machine.Humpback: 集群管理:支持节点扩容 ...