使用Canal作为mysql的数据同步工具
一、Canal介绍
1、应用场景
在前面的统计分析功能中,我们采取了服务调用获取统计数据,这样耦合度高,效率相对较低,目前我采取另一种实现方式,通过实时同步数据库表的方式实现,例如我们要统计每天注册与登录人数,我们只需把会员表同步到统计库中,实现本地统计就可以了,这样效率更高,耦合度更低,Canal就是一个很好的数据库同步工具。canal是阿里巴巴旗下的一款开源项目,纯Java开发。基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了MySQL。
2、Canal环境搭建
canal的原理是基于mysql binlog技术,所以这里一定需要开启mysql的binlog写入功能
开启mysql服务: service mysql start (或者 systemctl start mysqld.service)
(1)检查binlog功能是否有开启
mysql> show variables like 'log_bin';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| log_bin       | OFF    |
+---------------+-------+
1 row in set (0.00 sec)
(2)如果显示状态为OFF表示该功能未开启,开启binlog功能
1,修改 mysql 的配置文件 my.cnf
vi /etc/my.cnf
追加内容:
log-bin=mysql-bin     #binlog文件名
binlog_format=ROW     #选择row模式
server_id=1           #mysql实例id,不能和canal的slaveId重复
2,重启 mysql:
service mysql restart
3,登录 mysql 客户端,查看 log_bin 变量
mysql> show variables like 'log_bin';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| log_bin       | ON|
+---------------+-------+
1 row in set (0.00 sec)
————————————————
如果显示状态为ON表示该功能已开启
(3)在mysql里面添加以下的相关用户和权限
CREATE USER 'canal'@'%' IDENTIFIED BY 'canal';
GRANT SHOW VIEW, SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'%';
FLUSH PRIVILEGES;
3、下载安装Canal服务
下载地址:
https://github.com/alibaba/canal/releases
(1)下载之后,放到目录中,解压文件
cd /usr/local/canal
canal.deployer-1.1.4.tar.gz
tar zxvf canal.deployer-1.1.4.tar.gz
(2)修改canal的配置文件
vi conf/example/instance.properties  #修改这个properties配置文件
#需要改成自己的数据库信息
canal.instance.master.address=192.168.44.132:3306
#需要改成自己的数据库用户名与密码
canal.instance.dbUsername=canal
canal.instance.dbPassword=canal
#需要改成同步的数据库表规则,例如只是同步一下表
#canal.instance.filter.regex=.*\\..*
canal.instance.filter.regex=guli_ucenter.ucenter_member
备注:
mysql 数据解析关注的表,Perl正则表达式.
多个正则之间以逗号(,)分隔,转义符需要双斜杠(\\)
常见例子:
1.  所有表:.*   or  .*\\..*
2.  canal schema下所有表: canal\\..*
3.  canal下的以canal打头的表:canal\\.canal.*
4.  canal schema下的一张表:canal.test1
5.  多个规则组合使用:canal\\..*,mysql.test1,mysql.test2 (逗号分隔)
注意:此过滤条件只针对row模式的数据有效(ps. mixed/statement因为不解析sql,所以无法准确提取tableName进行过滤)
(3)进入bin目录下启动
sh bin/startup.sh
二、创建canal_client模块
1、在guliedu_parent下创建canal_client模块

2、在pom.xml中引入相关依赖
<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <!--mysql-->
    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
    </dependency>
    <dependency>
        <groupId>commons-dbutils</groupId>
        <artifactId>commons-dbutils</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-jdbc</artifactId>
    </dependency>
    <dependency>
        <groupId>com.alibaba.otter</groupId>
        <artifactId>canal.client</artifactId>
    </dependency>
</dependencies>
3、创建application.properties配置文件
# 服务端口
server.port=10000
# 服务名
spring.application.name=canal-client
# 环境设置:dev、test、prod
spring.profiles.active=dev
# mysql数据库连接
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/guli?serverTimezone=GMT%2B8
spring.datasource.username=root
spring.datasource.password=root
4、编写canal客户端类
import com.alibaba.otter.canal.client.CanalConnector;
import com.alibaba.otter.canal.client.CanalConnectors;
import com.alibaba.otter.canal.protocol.CanalEntry.*;
import com.alibaba.otter.canal.protocol.Message;
import com.google.protobuf.InvalidProtocolBufferException;
import org.apache.commons.dbutils.DbUtils;
import org.apache.commons.dbutils.QueryRunner;
import org.springframework.stereotype.Component;
import javax.annotation.Resource;
import javax.sql.DataSource;
import java.net.InetSocketAddress;
import java.sql.Connection;
import java.sql.SQLException;
import java.util.Iterator;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue;
@Component
public class CanalClient {
    //sql队列
    private Queue<String> SQL_QUEUE = new ConcurrentLinkedQueue<>();
    @Resource
    private DataSource dataSource;
    /**
     * canal入库方法
     */
    public void run() {
        CanalConnector connector = CanalConnectors.newSingleConnector(new InetSocketAddress("192.168.44.132",
                11111), "example", "", "");
        int batchSize = 1000;
        try {
            connector.connect();
            connector.subscribe(".*\\..*");
            connector.rollback();
            try {
                while (true) {
                    //尝试从master那边拉去数据batchSize条记录,有多少取多少
                    Message message = connector.getWithoutAck(batchSize);
                    long batchId = message.getId();
                    int size = message.getEntries().size();
                    if (batchId == -1 || size == 0) {
                        Thread.sleep(1000);
                    } else {
                        dataHandle(message.getEntries());
                    }
                    connector.ack(batchId);
                    //当队列里面堆积的sql大于一定数值的时候就模拟执行
                    if (SQL_QUEUE.size() >= 1) {
                        executeQueueSql();
                    }
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (InvalidProtocolBufferException e) {
                e.printStackTrace();
            }
        } finally {
            connector.disconnect();
        }
    }
    /**
     * 模拟执行队列里面的sql语句
     */
    public void executeQueueSql() {
        int size = SQL_QUEUE.size();
        for (int i = 0; i < size; i++) {
            String sql = SQL_QUEUE.poll();
            System.out.println("[sql]----> " + sql);
            this.execute(sql.toString());
        }
    }
    /**
     * 数据处理
     *
     * @param entrys
     */
    private void dataHandle(List<Entry> entrys) throws InvalidProtocolBufferException {
        for (Entry entry : entrys) {
            if (EntryType.ROWDATA == entry.getEntryType()) {
                RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
                EventType eventType = rowChange.getEventType();
                if (eventType == EventType.DELETE) {
                    saveDeleteSql(entry);
                } else if (eventType == EventType.UPDATE) {
                    saveUpdateSql(entry);
                } else if (eventType == EventType.INSERT) {
                    saveInsertSql(entry);
                }
            }
        }
    }
    /**
     * 保存更新语句
     *
     * @param entry
     */
    private void saveUpdateSql(Entry entry) {
        try {
            RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
            List<RowData> rowDatasList = rowChange.getRowDatasList();
            for (RowData rowData : rowDatasList) {
                List<Column> newColumnList = rowData.getAfterColumnsList();
                StringBuffer sql = new StringBuffer("update " + entry.getHeader().getTableName() + " set ");
                for (int i = 0; i < newColumnList.size(); i++) {
                    sql.append(" " + newColumnList.get(i).getName()
                            + " = '" + newColumnList.get(i).getValue() + "'");
                    if (i != newColumnList.size() - 1) {
                        sql.append(",");
                    }
                }
                sql.append(" where ");
                List<Column> oldColumnList = rowData.getBeforeColumnsList();
                for (Column column : oldColumnList) {
                    if (column.getIsKey()) {
                        //暂时只支持单一主键
                        sql.append(column.getName() + "=" + column.getValue());
                        break;
                    }
                }
                SQL_QUEUE.add(sql.toString());
            }
        } catch (InvalidProtocolBufferException e) {
            e.printStackTrace();
        }
    }
    /**
     * 保存删除语句
     *
     * @param entry
     */
    private void saveDeleteSql(Entry entry) {
        try {
            RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
            List<RowData> rowDatasList = rowChange.getRowDatasList();
            for (RowData rowData : rowDatasList) {
                List<Column> columnList = rowData.getBeforeColumnsList();
                StringBuffer sql = new StringBuffer("delete from " + entry.getHeader().getTableName() + " where ");
                for (Column column : columnList) {
                    if (column.getIsKey()) {
                        //暂时只支持单一主键
                        sql.append(column.getName() + "=" + column.getValue());
                        break;
                    }
                }
                SQL_QUEUE.add(sql.toString());
            }
        } catch (InvalidProtocolBufferException e) {
            e.printStackTrace();
        }
    }
    /**
     * 保存插入语句
     *
     * @param entry
     */
    private void saveInsertSql(Entry entry) {
        try {
            RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
            List<RowData> rowDatasList = rowChange.getRowDatasList();
            for (RowData rowData : rowDatasList) {
                List<Column> columnList = rowData.getAfterColumnsList();
                StringBuffer sql = new StringBuffer("insert into " + entry.getHeader().getTableName() + " (");
                for (int i = 0; i < columnList.size(); i++) {
                    sql.append(columnList.get(i).getName());
                    if (i != columnList.size() - 1) {
                        sql.append(",");
                    }
                }
                sql.append(") VALUES (");
                for (int i = 0; i < columnList.size(); i++) {
                    sql.append("'" + columnList.get(i).getValue() + "'");
                    if (i != columnList.size() - 1) {
                        sql.append(",");
                    }
                }
                sql.append(")");
                SQL_QUEUE.add(sql.toString());
            }
        } catch (InvalidProtocolBufferException e) {
            e.printStackTrace();
        }
    }
    /**
     * 入库
     * @param sql
     */
    public void execute(String sql) {
        Connection con = null;
        try {
            if(null == sql) return;
            con = dataSource.getConnection();
            QueryRunner qr = new QueryRunner();
            int row = qr.execute(con, sql);
            System.out.println("update: "+ row);
        } catch (SQLException e) {
            e.printStackTrace();
        } finally {
            DbUtils.closeQuietly(con);
        }
    }
}
5、创建启动类
@SpringBootApplication
public class CanalApplication implements CommandLineRunner {
    @Resource
    private CanalClient canalClient;
    public static void main(String[] args) {
        SpringApplication.run(CanalApplication.class, args);
    }
    @Override
    public void run(String... strings) throws Exception {
        //项目启动,执行canal客户端监听
        canalClient.run();
    }
}
使用Canal作为mysql的数据同步工具的更多相关文章
- Spark记录-阿里巴巴开源工具DataX数据同步工具使用
		1.官网下载 下载地址:https://github.com/alibaba/DataX DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括 MySQL.Oracle.SqlSe ... 
- 环境篇:数据同步工具DataX
		环境篇:数据同步工具DataX 1 概述 https://github.com/alibaba/DataX DataX是什么? DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括 ... 
- Linux实战教学笔记21:Rsync数据同步工具
		第二十一节 Rsync数据同步工具 标签(空格分隔): Linux实战教学笔记-陈思齐 ---本教学笔记是本人学习和工作生涯中的摘记整理而成,此为初稿(尚有诸多不完善之处),为原创作品,允许转载,转载 ... 
- Rsync数据同步工具
		Rsync数据同步工具 什么是Rsync? Rsync是一款开源的.快速的.多功能的,可以实现全量及增量的本地或原程数据同步备份 ... 
- 两台Mysql数据库数据同步实现
		两台Mysql数据库数据同步实现 做开发的时候要做Mysql的数据库同步,两台安装一样的系统,都是FreeBSD5.4,安装了Apache 2.0.55和PHP 4.4.0,Mysql的版本是4.1. ... 
- rsync数据同步工具的配置
		rsync数据同步工具的配置 1. rsync介绍 1.1.什么是rsync rsync是一款开源的快速的,多功能的,可实现全量及增量的本地或远程数据同步备份的优秀工具.Rsync软件适用于 unix ... 
- Goldengate完成Mysql到Mysql的数据同步
		文档参考地址:http://blog.csdn.net/u010587433/article/details/49305019 需求: 使用Goldengate完成Mysql到Mysql的数据同步,源 ... 
- Linux系统备份还原工具4(rsync/远程数据同步工具)
		rsync即是能备份系统也是数据同步的工具. 在Jenkins上可以使用rsync结合SSH的免密登录做数据同步和分发.这样一来可以达到部署全命令化,不需要依赖任何插件去实现. 命令参考:http:/ ... 
- rsync---远程数据同步工具
		rsync命令是一个远程数据同步工具,可通过LAN/WAN快速同步多台主机间的文件.rsync使用所谓的“rsync算法”来使本地和远程两个主机之间的文件达到同步,这个算法只传送两个文件的不同部分,而 ... 
随机推荐
- Windows安装Pytorch并配置Anaconda与Pycharm
			1 开发环境准备 Python 3.7+Anaconda3 5.3.1(64位)+CUDA+Pycharm Community 2 安装Anaconda 2.1 进入官网下载: 根据windows版本 ... 
- 在IDEA中使用JDBC获取数据库连接时的报错及解决办法
			在IDEA中使用JDBC获取数据库连接时,有时会报错Sat Dec 19 19:32:18 CST 2020 WARN: Establishing SSL connection without ser ... 
- 【windows】【消息中间件】【安装】Elasticsearch
			一.准备工作 elasticsearch的下载地址:https://www.elastic.co/cn/downloads/elasticsearch ik分词器的下载地址:https://githu ... 
- Windows锁定屏幕然后关闭显示器,可执行程序
			有时候我们需要关闭屏幕来休息一下或者在本上写东西,但是屏幕亮着的时候会分心,但是关闭显示器又太麻烦了,所以直接来一个小程序(非微信小程序).还有一种情况,有时候晚上要离开电脑旁了,但是电脑还在做事情, ... 
- 浅析Python闭包
			1.什么是闭包 在介绍闭包概念前,我们先来看一段简短的代码 def sum_calc(*args): def wrapper(): sum = 0 for n in args: sum += n; r ... 
- spring传播机制注意点
			在同一个类里面spring的传播机制是不起作用的比如说在执行saveA方法的时候调用C方法插入C设置的传播属性是不使用事物 但是执行的效果是saveA方法抛出异常后导致C的记录回滚了也就是说明C方法设 ... 
- 冒泡排序算法JAVA实现版
			/***关于冒泡排序,从性能最低版本实现到性能最优版本实现*/public class BubbleSortDemo { public static void sort(int array[]) { ... 
- python之json、pickle模块
			一.json模块 之前我们学习过用eval内置方法可以将一个字符串转成python对象,不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候, ... 
- ATM_tests
			ATM取款机练习程序 一.程序分析 自顶向下.逐步细化 按照程序执行的流程,将程序分解为若干个功能相对独立的函数(方法),每个函数(方法)负责某一功能,然后根据程序执行的流程,将函数(方法)组装(调用 ... 
- 如何使用 VS Code开发.NET Core应用程序
			Visual Studio Code(VS Code)是Microsoft为Windows,Linux和Mac操作系统开发的免费,跨平台,轻量级的源代码编辑器,它是源代码编辑器,而Visual Stu ... 
