归一化(Normalization)和标准化(Standardization)
归一化和标准化是机器学习和深度学习中经常使用两种feature scaling的方式,这里主要讲述以下这两种feature scaling的方式如何计算,以及一般在什么情况下使用。
归一化的计算方式:

上述计算公式可以将特征的值规范在[0, 1]之间,使用归一化来进行feature scaling一般是要求所有参数都处于正值范围。
标准化的计算公式:

通过上述公式计算得到的特征值遵循均值为0方差为1,大部分情况下均推荐使用标准化的方式进行feature scaling。
归一化(Normalization)和标准化(Standardization)的更多相关文章
- 数据标准化/归一化normalization
http://blog.csdn.net/pipisorry/article/details/52247379 基础知识参考: [均值.方差与协方差矩阵] [矩阵论:向量范数和矩阵范数] 数据的标准化 ...
- 转:数据标准化/归一化normalization
转自:数据标准化/归一化normalization 这里主要讲连续型特征归一化的常用方法.离散参考[数据预处理:独热编码(One-Hot Encoding)]. 基础知识参考: [均值.方差与协方差矩 ...
- Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)
关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...
- [转] 深入理解Batch Normalization批标准化
转自:https://www.cnblogs.com/guoyaohua/p/8724433.html 郭耀华's Blog 欲穷千里目,更上一层楼项目主页:https://github.com/gu ...
- 转载-【深度学习】深入理解Batch Normalization批标准化
全文转载于郭耀华-[深度学习]深入理解Batch Normalization批标准化: 文章链接Batch Normalization: Accelerating Deep Network T ...
- 莫烦课程Batch Normalization 批标准化
for i in range(N_HIDDEN): # build hidden layers and BN layers input_size = 1 if i == 0 else 10 fc = ...
- [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.9_归一化normalization
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9 归一化Normaliation 训练神经网络,其中一个加速训练的方法就是归一化输入(normalize inputs). 假设我们有一个 ...
- 【深度学习】深入理解Batch Normalization批标准化
这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出. Batch Normaliz ...
- Batch normalization批标准化的理解
BN的基本思想,其提出是解决梯度消失的问题的某一方法. 在深度神经网络做非线性变换前的激活输入值(x=wu+b,u是输入),当层数越深的时候,输入值的分布就会发生偏移,梯度出现消失的情况, 一般是整体 ...
- Batch Normalization 批量标准化
本篇博文转自:https://www.cnblogs.com/guoyaohua/p/8724433.html Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效 ...
随机推荐
- docker理论题-02
1.什么是namespace? 答:名称空间,作用隔离容器 2.namespace隔离有那些? 答:ipc:共享内存.消息队列 mnt:挂载点 net:网络栈 uts:域,主机名 user:用户,组 ...
- Spring(二) Mini版Spring的实现
实现思路 先来介绍一下 Mini 版本的 Spring 基本实现思路,如下图所示: 自定义配置 配置 application.properties 文件 为了解析方便,我们用 application. ...
- Gym 101174D Dinner Bet(概率DP)题解
题意:n个球,两个人每人选C个球作为目标,然后放回.每回合有放回的拿出D个球,如果有目标球,就实现了这个目标,直到至少一个人实现了所有目标游戏结束.问结束回合的期望.误差1e-3以内. 思路:概率DP ...
- Gym 101128A Promotions(思维 + dfs)题解
题意:给一有向图,如果A指向B,则A是B的上级.一直i要升职那么他的上级必须都升职.现在给你一个升职人数的区间[a, b],问你升职a人时几个人必被升职,b时几个人必升职,b时几个人没有可能被升职. ...
- Spring配置声明式事务
Spring的事务有两种配置,一种是编程式,另一种是声明式,这里我们配置的是声明式事务 <?xml version="1.0" encoding="UTF-8&qu ...
- Storybook 最新教程
Storybook 最新教程 Storybook is the most popular UI component development tool for React, Vue, and Angul ...
- jest ignore
jest ignore modulePathIgnorePatterns https://jestjs.io/docs/en/configuration modulePathIgnorePattern ...
- CSS rulesets
CSS rulesets https://developer.mozilla.org/en-US/docs/Web/CSS/Syntax#CSS_rulesets https://css-tricks ...
- serverless & front end
serverless & front end Cloud Functions or Functions as a Service (FaaS) https://serverless.css-t ...
- GitHub for mobile
GitHub for mobile https://github.com/mobile