NOI2008 志愿者招聘
文化课 + 竞赛双废物又来水题解了。
首先,对于题干中的人,很像网络流中的流量,但是他有一个每天人数的下限,我从网上借鉴(chaoxi)到了两种思路:
- 把下界限制转化为一条边的流量下界,这样就是最小费用上下界最大流。
- 加入几个新值,其条件正好为 \(\ge 0\),将其当做一条流量,这样不等式就变成了等式,我们可以利用流量守恒,用点的流满 $\Leftrightarrow $ 等式成立,这样就变成了一个最小费用最大流,去掉了上下界的影响。
其实这两种思路本质好像是一致的...
思路一
即 \(y\) 总视频的解法,考虑到人的工作时间是一段区间,不妨差分考虑,先让 \(i\) 的人无条件免费顺延到 \(i + 1\) 的边,然后在 \(S\) 和 \(T\) 人为规定加入/去除即可,这样一类工作者只会设计常数的点边,复杂度正常。
那么建立网络 \(G\):
- 对于一天 \(i\),让 \(i\) 点向 \(i + 1\) 点连边。流量下界是 \(A_i\)、上界是正无穷,费用是 \(0\),这条边的流量意味着第 \(i\) 天的工作人数,
- 对于一类志愿者 \(j\),让 \(T_j + 1\) 向 \(S_j\) 连一条容量无界限,费用是 \(C_i\) 的边,这条边可以自由活动,意味着自由安排是志愿者。
这样,每个志愿者相当于在流网络的一单位的流量流过了一个环,这个问题变成了最小费用无源汇上下界可行流,我们都知道可行流的可行判定经过转化就是跑到最大流,所以转化完后用最小费用最大流就行了。
时间复杂度
\(O(n^2m)\) 复杂度真棒
Code
这题 Acwing 咋这么卡常啊
#include <iostream>
#include <cstdio>
#include <cstring>
#define rint register int
typedef long long LL;
using namespace std;
const int N = 1005, M = (N * 2 + 10000) * 2, INF = 0x3f3f3f3f;
int n, m, a[N], incf[N], d[N], q[N], pre[N];
int head[N], numE = 1, S, T;
bool vis[N];
LL ans;
struct E{
int next, v, w, c;
} e[M];
void inline add(int u, int v, int w, int c) {
e[++numE] = (E) { head[u], v, w, c };
head[u] = numE;
e[++numE] = (E) { head[v], u, 0, -c };
head[v] = numE;
}
bool inline spfa() {
memset(d, 0x3f, sizeof d);
rint hh = 0, tt = 1;
d[S] = 0, q[0] = S, incf[S] = INF;
while (hh != tt) {
rint u = q[hh++]; vis[u] = false;
if (hh == N) hh = 0;
for (rint i = head[u]; i; i = e[i].next) {
rint v = e[i].v;
if (d[u] + e[i].c < d[v] && e[i].w) {
d[v] = d[u] + e[i].c, pre[v] = i, incf[v] = min(incf[u], e[i].w);
if (!vis[v]) {
vis[v] = true, q[tt++] = v;
if (tt == N) tt = 0;
}
}
}
}
return d[T] != INF;
}
void inline update() {
int x = T;
while (x != S) {
int i = pre[x];
e[i].w -= incf[T], e[i ^ 1].w += incf[T];
x = e[i ^ 1].v;
}
ans += (LL)d[T] * incf[T];
}
int main() {
scanf("%d%d", &n, &m);
S = n + 2, T = n + 3;
for (rint i = 1, A; i <= n; i++) {
scanf("%d", &A);
add(i, i + 1, INF, 0);
a[i] -= A, a[i + 1] += A;
}
for (rint i = 1, s, t, c; i <= m; i++) {
scanf("%d%d%d", &s, &t, &c);
add(t + 1, s, INF, c);
}
for (rint i = 1; i <= n + 1; i++) {
if (a[i] > 0) add(S, i, a[i], 0);
else if (a[i] < 0) add(i, T, -a[i], 0);
}
while (spfa()) update();
printf("%lld\n", ans);
return 0;
}
思路二
设一些新的变量:
\(B_i (B_i \ge 0)\),表示第 \(i\) 天实际招了 \(A_i + B_i\) 人。
\(D_i (D_i \ge 0)\),表示实际上第 \(i\) 类志愿者招了 \(D_i\) 类人
这样我们就可以列出 \(n\) 个等式,对于第 \(i\) 个等式(针对第 \(i\) 天的匹配情况)
\]
但是为了让每个变量在流网络中、在每个等式中都相等,所以我们得让每个变量至多出现在两个式子中,(如果出现在一个式子,就可以将其到源汇点的费用改了,这样就是费用对应上了,如果两个式子,可以从本该连向汇点的边直接连向本该从源点出的边,这样费用对应。这里本人实力还是非常菜,很可能讲了一些玄学的东西,求大佬们轻喷。)
由于每个 \(j\) 影响的 \(i\) 是连续的一段,所以我们可以将式子前后加入两个 \(0 = 0\),然后将式子差分(这是一步等价变换)这样每个 \(D_j, B_i\) 都恰好会出现在两个式子之中。
对于第 \(i\) 个等式而言,差分后的式子:
\]
我们把式子移项,让每一项都是正的:
\]
这样,我们可以把等式看作一个点的流量守恒等式,等式左右两侧分别是流入该点/流出改点的流量,我们建立流网络:
- 对于常量 \(A\),在左侧则连一条自虚拟源点出发,到 \(i\) 点,流量为 \(A_i\),无费用的边,右侧连到汇点,即对称的。
- 对于变量 \(B\),从 \(B_i\) 所在右侧等式的点向 \(B_i\) 所在左侧的点,即 \(i\) 连向 \(i-1\),这条边流量无限,意味着自由选择的 \(B\),而这条边 + 流量守恒保证了 \(B_i\) 在两个式子中不变
- 对于变量 \(D\) 同理,即 \(S_j\) 连向 \(T_j + 1\),流量无限,费用为 \(C_j\) 的边。
这样,在流网络跑到的最大流 = 从 \(S\) 出发所有容量(满足常量的强行限制) \(\Leftrightarrow\) 差分等式成立 \(\Leftrightarrow\) 原始等式成立 \(\Leftrightarrow\) 一个满足条件的方案
所以,原问题最小费用 \(\Leftrightarrow\) 最小费用最大流
时间复杂度
\(O(n^2m)\)
Code
这个代码过不去acwing。。坑
#pragma GCC optimize("Ofast","-funroll-loops")
#include <iostream>
#include <cstdio>
#include <cstring>
#define rint register int
typedef long long LL;
using namespace std;
const int N = 1005, M = (N * 3 + 10000) * 2, INF = 0x3f3f3f3f;
int n, m, a[N], incf[N], d[N], q[N], pre[N];
int head[N], numE = 1, S, T;
bool vis[N];
LL ans;
struct E{
int next, v, w, c;
} e[M];
void inline add(int u, int v, int w, int c) {
e[++numE] = (E) { head[u], v, w, c };
head[u] = numE;
e[++numE] = (E) { head[v], u, 0, -c };
head[v] = numE;
}
bool inline spfa() {
memset(d, 0x3f, sizeof d);
rint hh = 0, tt = 1;
d[S] = 0, q[0] = S, incf[S] = INF;
while (hh != tt) {
rint u = q[hh++]; vis[u] = false;
if (hh == N) hh = 0;
for (rint i = head[u]; i; i = e[i].next) {
rint v = e[i].v;
if (d[u] + e[i].c < d[v] && e[i].w) {
d[v] = d[u] + e[i].c, pre[v] = i, incf[v] = min(incf[u], e[i].w);
if (!vis[v]) {
vis[v] = true;
q[tt++] = v;
if (tt == N) tt = 0;
}
}
}
}
return d[T] != INF;
}
void inline update() {
int x = T;
while (x != S) {
int i = pre[x];
e[i].w -= incf[T], e[i ^ 1].w += incf[T];
x = e[i ^ 1].v;
}
ans += (LL)d[T] * incf[T];
}
int main() {
scanf("%d%d", &n, &m);
S = n + 2, T = n + 3;
for (rint i = 1, A; i <= n; i++) {
scanf("%d", &A);
add(S, i, A, 0), add(i + 1, T, A, 0);
add(i + 1, i, INF, 0);
}
for (rint i = 1, s, t, c; i <= m; i++) {
scanf("%d%d%d", &s, &t, &c);
add(s, t + 1, INF, c);
}
while (spfa()) update();
printf("%lld\n", ans);
return 0;
}
NOI2008 志愿者招聘的更多相关文章
- BZOJ 1061: [Noi2008]志愿者招募
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4064 Solved: 2476[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 3975 Solved: 2421[Submit][Stat ...
- [BZOJ1061][Noi2008]志愿者招募
[BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...
- BZOJ 1061: [Noi2008]志愿者招募 费用流
1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...
- bzoj1061: [Noi2008]志愿者招募
线性规划与费用流.http://www.cnblogs.com/iiyiyi/p/5616080.html.数组范围开错了!!!然后2.31-1=0x7fffffff!=0x7f7f7f7f. 开始以 ...
- NOI2008 志愿者招募
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1859 Solved: 1169[Submit][Stat ...
- 线性规划||网络流(费用流):COGS 288. [NOI2008] 志愿者招募
[NOI2008] 志愿者招募 输入文件:employee.in 输出文件:employee.out 简单对比 时间限制:2 s 内存限制:512 MB [问题描述] 申奥成功后,布布经过 ...
- 从[NOI2008志愿者招募]浅谈线性规划在网络流构图上的巧用
首先来看一下题..http://www.lydsy.com/JudgeOnline/problem.php?id=1061 1061: [Noi2008]志愿者招募 Description 申奥成功后 ...
- 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 5291 Solved: 3173[Submit][Stat ...
随机推荐
- 主动关闭 time wait结构体
/* * This is a TIME_WAIT sock. It works around the memory consumption * problems of sockets in such ...
- IP 层收发报文简要剖析5--ip报文发送2
udp 发送ip段报文接口ip_append_data ip_append_data 函数主要用来udp 套接字以及raw套接字发送报文的接口.在tcp中发送ack 以及rest段的ip_send_u ...
- 如何删除一台OSD主机
在ceph的一台OSD主机出现故障的时候,数据可以通过副本的机制进行恢复,之后通过删除osd的操作也能够将故障osd从osd tree当中删除掉,但是故障的 osd 的主机仍然会留在集群当中,通过 c ...
- Bad magic number ImportError in python
是源码编译里面版本不对,删除掉源码pyc然后重新编译就可以了 find .-name '*.pyc'-delete python -m compileall . 更新历史 why when 创建 20 ...
- python学习--sys.argv
sys.argv是获取命令行参数的: sys.argv[0]表示代码本身文件路径:从1开始获取参数. import sysprint (sys.argv[0])count = int(sys.argv ...
- 建议收藏,从零开始创建一个Activiti工作流,手把手教你完成
环境配置 项目环境: JDK1.8 tomcat7 maven3.5 开发工具: IDEA activiti7 创建项目 目标:创建一个maven项目,集成Activiti,并自动生成25张数据库表 ...
- sqlilab less11-less18
less-11 uname和passwd直接带入查询,万能密码 sqlmap自动搜索表单,或者抓包后用-r参数 less-12 post数据用小括号进行包裹,构造万能密码") or 1=1 ...
- ServiceStage-华为微服务开发与管理平台
前言 在上一篇文章一年前,我来到国企搞IT 中,和小伙伴分享了我在国企这一年当中的所见,所闻,所想,很高兴能够获得很多同道中人的共鸣.过去一年,我的很大一部分工作都投入到公司技术平台的建设中.Jira ...
- 面试阿里,腾讯,字节跳动90%都会被问到的Spring中的循环依赖
前言 Spring中的循环依赖一直是Spring中一个很重要的话题,一方面是因为源码中为了解决循环依赖做了很多处理,另外一方面是因为面试的时候,如果问到Spring中比较高阶的问题,那么循环依赖必定逃 ...
- 借助Mac自带的强大的搜索功能,如何快速搜索打开Tuxera Disk Manager
现在很多小伙伴们在遇到Mac读写NTFS格式硬盘问题的时候,都会选择使用Tuxera NTFS这个磁盘读写工具.因为这款读写工具不仅可以帮助我们进行读写工作,还具有一个磁盘管理工具Disk Manag ...