对数几率回归(逻辑回归)原理与Python实现
一、对数几率和对数几率回归
在对数几率回归中,我们将样本的模型输出\(y^*\)定义为样本为正例的概率,将\(\frac{y^*}{1-y^*}\)定义为几率(odds),几率表示的是样本作为正例的相对可能性。将几率取对便可以得到对数几率(log odds,logit)。
\]
而对数几率回归(Logistic Regression)则试图从样本集中学得模型\(w^Tx\)并使其逼近该样本的对数几率,从而可以得到:
\]
二、Sigmoid函数
通过求解\(conditoin1\)可以得到:
\]
由此我们可以知道样本\(x_i\)为正例的概率可以通过函数\(h(w^Tx_i)=\frac{1}{1+e^{-w^Tx_i}}\)来表示。而其中的函数\(h(z)\)便被称为Sigmoid函数,其图像如下:


求其导数:
\]
这是一个很好的性质,有利于简化后面优化模型时的计算。
三、极大似然法
通过前面的推导,可以得到:
\]
合并两个式子,则有:
\]
求出了样本标记的分布律,便可以通过极大似然法来估计分布律中的参数\(w\)。先写出极大似然函数:
\]
对极大似然函数取对可以得到对数似然函数:
\]
在前面乘上负数因子便可以得到对数几率回归的代价函数:
\]
通过最小化上述代价函数便可以估计出参数\(w\)的值。
四、梯度下降法
通过上述步骤,优化对数几率回归模型的关键变成了求解:
\]
在《线性回归:梯度下降法优化》中,我已经详细介绍了梯度下降法的数学原理,这里直接使用梯度下降法来对对数几率回归模型进行优化。
对\(J(w)\)进行求导:
\]
将\(\frac{\partial J}{\partial w}\)带入参数\(w\)的更新公式\(w^*=w-\eta\frac{\partial J}{\partial w}\),最终得到\(w\)的更新公式如下:
\]
四、Python实现
梯度下降优化算法:
def fit(self, X, y):
self.W = np.zeros(X.shape[1] + 1)
for i in range(self.max_iter):
delta = self._activation(self._linear_func(X)) - y
self.W[0] -= self.eta * delta.sum()
self.W[1:] -= self.eta * (delta @ X)
return self
导入鸢尾花数据集进行测试:
if __name__ == "__main__":
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
irirs = datasets.load_iris()
X = irirs["data"][:100]
y = irirs["target"][:100]
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3)
classifier = LRClassifier().fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(classification_report(y_test, y_pred))
分类报告如下:

对数几率回归(逻辑回归)原理与Python实现的更多相关文章
- 回归树的原理及Python实现
大名鼎鼎的 GBDT 算法就是用回归树组合而成的.本文就回归树的基本原理进行讲解,并手把手.肩并肩地带您实现这一算法. 1. 原理篇 1.1 最简单的模型 如果预测某个连续变量的大小,最简单的模型之一 ...
- Logistic回归 逻辑回归 练习——以2018建模校赛为数据源
把上次建模校赛一个根据三围将女性分为四类(苹果型.梨形.报纸型.沙漏)的问题用逻辑回归实现了,包括从excel读取数据等一系列操作. Excel的格式如下:假设有r列,则前r-1列为数据,最后一列为类 ...
- 逻辑回归原理_挑战者飞船事故和乳腺癌案例_Python和R_信用评分卡(AAA推荐)
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...
- 逻辑回归原理介绍及Matlab实现
原文:逻辑回归原理介绍及Matlab实现 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/laobai1015/article/details/781 ...
- GBDT回归的原理及Python实现
一.原理篇 1.1 温故知新回归树是GBDT的基础,之前的一篇文章曾经讲过回归树的原理和实现.链接如下: 回归树的原理及Python实现 1.2 预测年龄仍然以预测同事年龄来举例,从<回归树&g ...
- 机器学习入门11 - 逻辑回归 (Logistic Regression)
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...
- 线性回归、逻辑回归(LR)
线性回归 回归是一种极易理解的模型,就相当于y=f(x),表明自变量 x 和因变量 y 的关系.最常见问题有如 医生治病时的望.闻.问.切之后判定病人是否生了什么病,其中的望闻问切就是获得自变量x,即 ...
- 02-12 Logistic(逻辑)回归
目录 逻辑回归 一.逻辑回归学习目标 二.逻辑回归引入 三.逻辑回归详解 3.1 线性回归与逻辑回归 3.2 二元逻辑回归的假设函数 3.2.1 让步比 3.2.2 Sigmoid函数图像 3.3 二 ...
- 逻辑回归模型(Logistic Regression, LR)--分类
逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核 ...
- pytorch(06)autograd与逻辑回归
autograd与逻辑回归 自动求导系统中两个常用的方法: torch.autograd.backward and torch.autograd.grad 演示理解一阶导数.二阶导数的求导过程 理解自 ...
随机推荐
- java的jdk8新特性optional怎么样使用
从 Java 8 引入的一个很有趣的特性是 Optional 类.Optional 类主要解决的问题是臭名昭著的空指针异常(NullPointerException) -- 每个 Java 程序员都 ...
- 【Alpha冲刺阶段】Day 7
[Alpha冲刺阶段]Scrum Meeting Daily7 1.会议简述 会议开展时间 2020/5/28 8:00-8:30 PM 会议基本内容摘要 讨论合并测试问题 参与讨论人员 项目全体 ...
- Java程序员普遍存在的面试问题以及应对之道(新书第一章节摘录)
其实大多数Java开发确实能胜任日常的开发工作,但不少候选人却无法在面试中打动面试官.因为要在短时间的面试中全面展示自己的实力,这很需要技巧,而从当前大多数Java开发的面试现状来看,会面试的候选人不 ...
- Jmeter(1)下载和安装
一.Jmeter工具安装 1.jmeter安装包下载地址:http://jmeter.apache.org/,下载Binaries包,使用jmeter需要先安装jdk 2.解压后打开/bin目录下的j ...
- proxySQL with SemiSync
环境信息 hostname IP port role comm ms81 192.168.188.81 3399 master ms82 192.168.188.82 3399 slave ms83 ...
- gitbook 安装和使用
gitbook 安装和使用 安装nodejs wget https://nodejs.org/dist/v10.22.0/node-v10.22.0-linux-arm64.tar.xz tar - ...
- 07-flask-使用sqlalchemy
代码 from flask import Flask, render_template from sqlalchemy import create_engine from sqlalchemy.ext ...
- Spark-3-调优要点
1 内存调整要点 Memory Tuning,Java对象会占用原始数据2~5倍甚至更多的空间.最好的检测对象内存消耗的办法就是创建RDD,然后放到cache里面去,然后在UI上面看storage的变 ...
- 在python中元组与列表的区别及序列解包
一. 元组与列表的区别 元组中的数据一旦定义就不允许更改. 元组没有append().extend()和insert()等方法,无法向元组中添加元素. 元组没有remove()或pop()方法,也无法 ...
- asp.net mvc ajax文件上传
前台页面提交文件 <!DOCTYPE html> <html> <head> <meta name="viewport" content= ...