调整PG分多次调整和一次到位的迁移差别分析
前言
这个问题来源于我们研发的一个问题,在进行pg调整的时候,是一次调整到位好,还是分多次调整比较好,分多次调整的时候会不会出现某个pg反复挪动的问题,造成整体迁移量大于一次调整的
最近自己的项目上也有pg调整的需求,这个需求一般来源于pg规划好了,后期出现节点扩容的情况,需要对pg进行增加的调整
本篇用具体的数据来分析两种方式的差别
因为本篇的篇幅较长,直接先把结论拿出来
数据结论
| 调整pg | 迁移pg | 迁移对象 |
|---|---|---|
| 1200->1440 | 460 | 27933 |
| 1440->1680 | 458 | 27730 |
| 1680->1920 | 465 | 27946 |
| 1920->2160 | 457 | 21141 |
| 2160->2400 | 458 | 13938 |
| 总和 | 2305 | 132696 |
| 调整pg | 迁移pg | 迁移对象 |
|---|---|---|
| 1200->2400 | 2299 | 115361 |
结论:
分多次调整的时候,PG迁移量比一次调整多了6个,多了0.2%,对象的迁移量多了17335,多了15%
从数据上看pg迁移的数目基本一样,但是数据量是多了15%,这个是因为分多次迁移的时候,在pg基数比较小的时候,迁移一个pg里面的对象要比后期分裂以后的对象要多,就产生了这个数据量的差别
从整体上来看二者需要迁移的pg基本差不多,数据量上面会增加15%,分多次的时候是可以进行周期性调整的,拆分到不同的时间段来做,所以各有好处
实践
环境准备
本次测试采用的是开发环境,使用开发环境可以很快的部署一个需要的环境,本次分析采用的就是一台机器模拟的4台机器48个 4T osd的环境
环境搭建
生成集群
./vstart.sh -n --mon_num 1 --osd_num 48 --mds_num 1 --short -d
后续操作都在源码的src目录下面执行
设置存储池副本为2
修改crush weight 为3.7模拟4T盘
seq 0 47| xargs -i ./ceph -c ceph.conf osd crush reweight osd.{} 3.8
模拟主机分组
seq 0 11 |xargs -i ./ceph -c ceph.conf osd crush set osd.{} 3.8 host=lab8106 root=default
seq 12 23 |xargs -i ./ceph -c ceph.conf osd crush set osd.{} 3.8 host=lab8107 root=default
seq 24 35 |xargs -i ./ceph -c ceph.conf osd crush set osd.{} 3.8 host=lab8108 root=default
seq 36 47 |xargs -i ./ceph -c ceph.conf osd crush set osd.{} 3.8 host=lab8109 root=default
48个osd设置初始pg为1200,让每个osd上面差不多50个pg左右,做一下均衡操作,后续目标调整为pg为2400
准备120000个小文件准备put进去集群,使每个pg上面对象100个左右
./rados -c ceph.conf -p rbd bench -b 1K 600 write --no-cleanup
一次调整pg到2400
统计一次调整到位的情况下的数据迁移情况
./ceph -c ceph.conf osd pool set rbd pg_num 2400
记录当前的pg分布的情况
./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappg_1200_pgp_2400
调整存储池的pgp为2400
./ceph -c ceph.conf osd pool set rbd pgp_num 2400
等迁移完成以后,统计最终的pg分布情况
./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappg2400_pgp2400
这里说明一下,调整pg的时候只会触发pg的分裂,并不会影响集群的分布,也就是不会出现pg迁移的情况,调整pgp以后才会去改变pg的分布,所以本次数据分析统计的是pgp变动后的迁移的数据量,这个量才是集群的真正的迁移量
用比较的脚本来进行统计(脚本会在本文文末提供)
[root@lab8106 src]#python compair.py pgmappg_1200_pgp_2400 pgmappg2400_pgp2400
| pgs | objects |
-----------------
[2299, 115361]
也就是整个环境有2299次pg的变动,总共迁移的对象数目为115361个
分五次调整到2400PG
初始pg为1200个第一次调整,1200PG调整到1440PG
./ceph -c ceph.conf osd pool set rbd pg_num 1440
调整pg为1440,当前pgp为1200
记录当前的pg分布数据
./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappaira1
调整pgp为1440,当前pg为1440
记录当前的pg分布数据
./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappaira2
统计第一次调整后的迁移量
[root@lab8106 pgdata]# python compair.py pgmappaira1 pgmappaira2
| pgs | objects |
-----------------
[460, 27933]
第二次调整,1440PG调整到1680PG
./ceph -c ceph.conf osd pool set rbd pg_num 1680
调整pg为1680,当前pgp为1440
记录当前的pg分布数据
./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappairb1
调整pgp为1680,当前pg为1680
记录当前的pg分布数据
./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappairb2
统计第二次调整后的迁移量
[root@lab8106 pgdata]# python compair.py pgmappairb1 pgmappairb2
| pgs | objects |
-----------------
[458, 27730]
第三次调整,1680PG调整到1920PG
./ceph -c ceph.conf osd pool set rbd pg_num 1920
调整pg为1920,当前pgp为1680
记录当前的pg分布数据
./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappairc1
调整pgp为1920,当前pg为1920
记录当前的pg分布数据
./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappairc2
统计第三次调整后的迁移量
[root@lab8106 pgdata]# python compair.py pgmappairc1 pgmappairc2
| pgs | objects |
-----------------
[465, 27946]
第四次调整,1920PG调整到2160PG
./ceph -c ceph.conf osd pool set rbd pg_num 2160
调整pg为2160,当前pgp为1920
记录当前的pg分布数据
./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappaird1
调整pgp为2160,当前pg为2160
记录当前的pg分布数据
./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappaird2
统计第四次调整后的迁移量
[root@lab8106 pgdata]# python compair.py pgmappaird1 pgmappaird2
| pgs | objects |
-----------------
[457, 21141]
第五次调整,2160PG调整到2400PG
./ceph -c ceph.conf osd pool set rbd pg_num 2400
调整pg为2400,当前pgp为2160
记录当前的pg分布数据
./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappaire1
调整pgp为2400,当前pg为2400
记录当前的pg分布数据
./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappaire2
统计第五次调整后的迁移量
[root@lab8106 pgdata]# python compair.py pgmappaire1 pgmappaire2
| pgs | objects |
-----------------
[458, 13938]
上面五次加起来的总量为
2305 PGS 132696 objects
统计的脚本
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ ="zp"
import os,sys
class filetojson(object):
def __init__(self,orin,new):
self.origin=orin
self.new=new
def tojson(self,filename):
data={}
pginfo={}
for line in open(filename):
if "pg_stat" in line:
continue
lines=line.split()
pg=lines[0]
objects=lines[1]
withosd=lines[2]
data[pg]={'objects':objects,'osd':list(eval(withosd))}
return data
def compare(self):
movepg=0
allmovepg=0
allmoveobject=0
moveobject=0
oringinmap=self.tojson(self.origin)
newmap=self.tojson(self.new)
for key in oringinmap:
amapn=set(oringinmap[key]['osd'])
bmapn=set(newmap[key]['osd'])
movepg=len(list(amapn.difference(bmapn)))
if movepg != 0:
moveobject=int(oringinmap[key]['objects']) * int(movepg)
allmovepg=allmovepg+movepg
allmoveobject=allmoveobject+moveobject
return [allmovepg,allmoveobject]
mycom=filetojson(sys.argv[1],sys.argv[2])
print "| pgs | objects |"
print "-----------------"
print mycom.compare()
总结
本篇是对集群进行pg调整的这个场景下迁移的数据进行分析的,对于一个集群来说,还是要用数据来进行问题的说明会比较有说服力,凭感觉还是没有那么强的说服力,本篇因为环境所限,所以在模拟的时候采用的是单个pg100个对象的样本,如果需要更精确的数据可以采用多次测试,并且加大这个单个pg的对象数目
变更记录
| Why | Who | When |
|---|---|---|
| 创建 | 武汉-运维-磨渣 | 2017-06-14 |
调整PG分多次调整和一次到位的迁移差别分析的更多相关文章
- ceph PG数量调整/PG的状态说明
优化: PG Number PG和PGP数量一定要根据OSD的数量进行调整,计算公式如下,但是最后算出的结果一定要接近或者等于一个2的指数.调整PGP不会引起PG内的对象的分裂,但是会引起PG的分布的 ...
- k3 cloud成本调整单提示期末余额不存在调整单分录的维度,请先出库核算确认是否存在核算维度的数据
成本调整单提示期末余额不存在调整单分录的维度,请先出库核算确认是否存在核算维度的数据,如下图所示: 解决办法:先做出库核算,然后做成本调整单,再做出库核算(出库成本核算)
- CFormView动态调整对话框的尺寸和调整比例控制的部署
基于单个文件CFormView动态调整对话框的尺寸和调整比例控制的部署 假设你正在开发一个程序基于单个文件,使用CFormView基类来实现多种形式展示,那么,这个文件可能会给你一点帮助. 一.实现对 ...
- #调整随机森林的参数(调整n_estimators随机森林中树的数量默认10个树,精度递增显著,但并不是越多越好),加上verbose=True,显示进程使用信息
#调整随机森林的参数(调整n_estimators随机森林中树的数量默认10个树,精度递增显著) from sklearn import datasets X, y = datasets.make_c ...
- #调整随机森林的参数(调整max_features,结果未见明显差异)
#调整随机森林的参数(调整max_features,结果未见明显差异) from sklearn import datasets X, y = datasets.make_classification ...
- 调整 全局jvm 大小 tomcat 调整jvm大小
z最近公司换了一个线上的windows服务器,原来的内存48g,现在2g.项目启动报内存不足.又重新安装jre 安装jre 教程链接:(谢谢各位博友) https://www.genban.org/t ...
- rem布局,在用户调整手机字体大小/用户调整浏览器字体大小后,布局错乱问题
一.用户调整浏览器字体大小,影响的是从浏览器打开的web页. 浏览器设置字体大小,影响浏览器打开的页面.通过js可控制用户修改字体大小,使页面不受影响. (function(doc, win) { / ...
- 微服务、分库分表、分布式事务管理、APM链路跟踪性能分析演示项目
好多年没发博,最近有时间整理些东西,分享给大家. 所有内容都在github项目liuzhibin-cn/my-demo中,基于SpringBoot,演示Dubbo微服务 + Mycat, Shardi ...
- Crush 算法以及PG和PGP调整经验
PG和PGP调整经验调整前准备为了降低对业务的影响,需要调整以下参数ceph tell osd.* injectargs ‘–osd-max-backfills 1’ceph tell osd.* i ...
随机推荐
- 资源管理神器Clover
开开心心地上班,这时你得打开我的电脑,点进D盘,打开某个项目;然后还得打开XX文档,还有.... 最后的最后,你的桌面便成了这个样子 每天你都得天打开多个文件夹,切换时找文件找的晕头转向而烦恼. 每天 ...
- 【并查集】BZOJ 1854 连续攻击游戏
题目内容 洛谷链接 lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的某一个属性.并 ...
- spring-boot-route(十八)spring-boot-adtuator监控应用
Spring Boot提供了良好的服务监控模块,只需要通过简单的配置便可以完成服务监控和管理.但是服务监控这块内容往往是最容易被忽略的一块内容,今天我们一起来学习一下使用spring-boot-act ...
- spring boot:使用validator做接口的参数、表单、类中多字段的参数验证(spring boot 2.3.1)
一,为什么要做参数验证? 永远不要相信我们在后端接收到的数据, 1,防止别人通过接口乱刷服务:有些不怀好意的人或机构会乱刷我们的服务,例如:短信接口, 相信大家可能很多人在工作中遇到过这种情况 2,防 ...
- flink 处理实时数据的三重保障
flink 处理实时数据的三重保障 window+watermark 来处理乱序数据对于 TumblingEventTimeWindows window 的元数据startTime,endTime 和 ...
- C++ 多线程 std::thread 使用总结
在C++ 11之前,官方并没有支持线程库.C++ 11通过标准库引入了对 thread 类的支持,大大方便了完成多线程开发的工作. std::thread 构造函数 (1)thread() noex ...
- 《Head First 设计模式》:剩下的模式
正文 一.桥接模式 1.定义 桥接模式通过将实现和抽象分离开来,放在两个不同的类层次中,从而使得它们可以独立改变. 要点: 当一个类存在两个独立变化的维度,而且都需要进行扩展时,可以将其中一个维度抽象 ...
- Spring Shiro配置第三方SSO客户端登录
经过实践的Shiro配置,利用 sSOInterceptor 进行sso登录拦截 配置 @Configuration public class ShiroConfiguration extends B ...
- WTM系列教学视频全免费
WTM框架问世以来,受到越来越多开发者的喜爱,为了回报大家的厚爱,原本在CSDN上的教学视频已经全部免费,900多分钟的视频,而且还会继续更新. 为了方便大家观看,在B站上也同步更新,地址如下: CS ...
- Hadoop框架:HDFS高可用环境配置
本文源码:GitHub·点这里 || GitEE·点这里 一.HDFS高可用 1.基础描述 在单点或者少数节点故障的情况下,集群还可以正常的提供服务,HDFS高可用机制可以通过配置Active/Sta ...