前言

这个问题来源于我们研发的一个问题,在进行pg调整的时候,是一次调整到位好,还是分多次调整比较好,分多次调整的时候会不会出现某个pg反复挪动的问题,造成整体迁移量大于一次调整的

最近自己的项目上也有pg调整的需求,这个需求一般来源于pg规划好了,后期出现节点扩容的情况,需要对pg进行增加的调整

本篇用具体的数据来分析两种方式的差别

因为本篇的篇幅较长,直接先把结论拿出来

数据结论

调整pg 迁移pg 迁移对象
1200->1440 460 27933
1440->1680 458 27730
1680->1920 465 27946
1920->2160 457 21141
2160->2400 458 13938
总和 2305 132696
调整pg 迁移pg 迁移对象
1200->2400 2299 115361

结论:

分多次调整的时候,PG迁移量比一次调整多了6个,多了0.2%,对象的迁移量多了17335,多了15%

从数据上看pg迁移的数目基本一样,但是数据量是多了15%,这个是因为分多次迁移的时候,在pg基数比较小的时候,迁移一个pg里面的对象要比后期分裂以后的对象要多,就产生了这个数据量的差别

从整体上来看二者需要迁移的pg基本差不多,数据量上面会增加15%,分多次的时候是可以进行周期性调整的,拆分到不同的时间段来做,所以各有好处

实践

环境准备

本次测试采用的是开发环境,使用开发环境可以很快的部署一个需要的环境,本次分析采用的就是一台机器模拟的4台机器48个 4T osd的环境

环境搭建

生成集群

./vstart.sh -n  --mon_num 1 --osd_num 48 --mds_num 1 --short  -d

后续操作都在源码的src目录下面执行

设置存储池副本为2

修改crush weight 为3.7模拟4T盘

seq 0 47| xargs -i ./ceph -c ceph.conf osd crush reweight osd.{} 3.8

模拟主机分组

seq 0 11 |xargs -i ./ceph -c ceph.conf osd crush set osd.{} 3.8 host=lab8106 root=default
seq 12 23 |xargs -i ./ceph -c ceph.conf osd crush set osd.{} 3.8 host=lab8107 root=default
seq 24 35 |xargs -i ./ceph -c ceph.conf osd crush set osd.{} 3.8 host=lab8108 root=default
seq 36 47 |xargs -i ./ceph -c ceph.conf osd crush set osd.{} 3.8 host=lab8109 root=default

48个osd设置初始pg为1200,让每个osd上面差不多50个pg左右,做一下均衡操作,后续目标调整为pg为2400

准备120000个小文件准备put进去集群,使每个pg上面对象100个左右

./rados -c ceph.conf -p rbd bench -b 1K 600 write --no-cleanup

一次调整pg到2400

统计一次调整到位的情况下的数据迁移情况

./ceph  -c ceph.conf  osd pool set rbd pg_num 2400

记录当前的pg分布的情况

./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappg_1200_pgp_2400

调整存储池的pgp为2400

./ceph -c ceph.conf osd pool set rbd  pgp_num 2400

等迁移完成以后,统计最终的pg分布情况

./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappg2400_pgp2400

这里说明一下,调整pg的时候只会触发pg的分裂,并不会影响集群的分布,也就是不会出现pg迁移的情况,调整pgp以后才会去改变pg的分布,所以本次数据分析统计的是pgp变动后的迁移的数据量,这个量才是集群的真正的迁移量

用比较的脚本来进行统计(脚本会在本文文末提供)

[root@lab8106 src]#python compair.py pgmappg_1200_pgp_2400 pgmappg2400_pgp2400
| pgs | objects |
-----------------
[2299, 115361]

也就是整个环境有2299次pg的变动,总共迁移的对象数目为115361个

分五次调整到2400PG

初始pg为1200个第一次调整,1200PG调整到1440PG

./ceph -c ceph.conf osd pool set rbd pg_num 1440

调整pg为1440,当前pgp为1200

记录当前的pg分布数据

./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappaira1

调整pgp为1440,当前pg为1440

记录当前的pg分布数据

./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappaira2

统计第一次调整后的迁移量

[root@lab8106 pgdata]# python compair.py pgmappaira1 pgmappaira2
| pgs | objects |
-----------------
[460, 27933]

第二次调整,1440PG调整到1680PG

./ceph -c ceph.conf osd pool set rbd pg_num 1680

调整pg为1680,当前pgp为1440

记录当前的pg分布数据

./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappairb1

调整pgp为1680,当前pg为1680

记录当前的pg分布数据

./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappairb2

统计第二次调整后的迁移量

[root@lab8106 pgdata]# python compair.py pgmappairb1 pgmappairb2
| pgs | objects |
-----------------
[458, 27730]

第三次调整,1680PG调整到1920PG

./ceph -c ceph.conf osd pool set rbd pg_num 1920

调整pg为1920,当前pgp为1680

记录当前的pg分布数据

./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappairc1

调整pgp为1920,当前pg为1920

记录当前的pg分布数据

./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappairc2

统计第三次调整后的迁移量

[root@lab8106 pgdata]# python compair.py  pgmappairc1 pgmappairc2
| pgs | objects |
-----------------
[465, 27946]

第四次调整,1920PG调整到2160PG

./ceph -c ceph.conf osd pool set rbd pg_num 2160

调整pg为2160,当前pgp为1920

记录当前的pg分布数据

./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappaird1

调整pgp为2160,当前pg为2160

记录当前的pg分布数据

./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappaird2

统计第四次调整后的迁移量

[root@lab8106 pgdata]# python compair.py pgmappaird1 pgmappaird2
| pgs | objects |
-----------------
[457, 21141]

第五次调整,2160PG调整到2400PG

./ceph -c ceph.conf osd pool set rbd pg_num 2400

调整pg为2400,当前pgp为2160

记录当前的pg分布数据

./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappaire1

调整pgp为2400,当前pg为2400

记录当前的pg分布数据

./ceph -c ceph.conf pg dump pgs|awk '{print $1,$2,$15,$17}' > pgmappaire2

统计第五次调整后的迁移量

[root@lab8106 pgdata]# python compair.py pgmappaire1 pgmappaire2
| pgs | objects |
-----------------
[458, 13938]

上面五次加起来的总量为

2305 PGS 132696 objects

统计的脚本

#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ ="zp"
import os,sys class filetojson(object):
def __init__(self,orin,new):
self.origin=orin
self.new=new def tojson(self,filename):
data={}
pginfo={}
for line in open(filename):
if "pg_stat" in line:
continue
lines=line.split()
pg=lines[0]
objects=lines[1]
withosd=lines[2] data[pg]={'objects':objects,'osd':list(eval(withosd))}
return data def compare(self):
movepg=0
allmovepg=0
allmoveobject=0
moveobject=0
oringinmap=self.tojson(self.origin)
newmap=self.tojson(self.new)
for key in oringinmap:
amapn=set(oringinmap[key]['osd'])
bmapn=set(newmap[key]['osd'])
movepg=len(list(amapn.difference(bmapn)))
if movepg != 0:
moveobject=int(oringinmap[key]['objects']) * int(movepg)
allmovepg=allmovepg+movepg
allmoveobject=allmoveobject+moveobject
return [allmovepg,allmoveobject] mycom=filetojson(sys.argv[1],sys.argv[2])
print "| pgs | objects |"
print "-----------------"
print mycom.compare()

总结

本篇是对集群进行pg调整的这个场景下迁移的数据进行分析的,对于一个集群来说,还是要用数据来进行问题的说明会比较有说服力,凭感觉还是没有那么强的说服力,本篇因为环境所限,所以在模拟的时候采用的是单个pg100个对象的样本,如果需要更精确的数据可以采用多次测试,并且加大这个单个pg的对象数目

变更记录

Why Who When
创建 武汉-运维-磨渣 2017-06-14

调整PG分多次调整和一次到位的迁移差别分析的更多相关文章

  1. ceph PG数量调整/PG的状态说明

    优化: PG Number PG和PGP数量一定要根据OSD的数量进行调整,计算公式如下,但是最后算出的结果一定要接近或者等于一个2的指数.调整PGP不会引起PG内的对象的分裂,但是会引起PG的分布的 ...

  2. k3 cloud成本调整单提示期末余额不存在调整单分录的维度,请先出库核算确认是否存在核算维度的数据

    成本调整单提示期末余额不存在调整单分录的维度,请先出库核算确认是否存在核算维度的数据,如下图所示: 解决办法:先做出库核算,然后做成本调整单,再做出库核算(出库成本核算)

  3. CFormView动态调整对话框的尺寸和调整比例控制的部署

    基于单个文件CFormView动态调整对话框的尺寸和调整比例控制的部署 假设你正在开发一个程序基于单个文件,使用CFormView基类来实现多种形式展示,那么,这个文件可能会给你一点帮助. 一.实现对 ...

  4. #调整随机森林的参数(调整n_estimators随机森林中树的数量默认10个树,精度递增显著,但并不是越多越好),加上verbose=True,显示进程使用信息

    #调整随机森林的参数(调整n_estimators随机森林中树的数量默认10个树,精度递增显著) from sklearn import datasets X, y = datasets.make_c ...

  5. #调整随机森林的参数(调整max_features,结果未见明显差异)

    #调整随机森林的参数(调整max_features,结果未见明显差异) from sklearn import datasets X, y = datasets.make_classification ...

  6. 调整 全局jvm 大小 tomcat 调整jvm大小

    z最近公司换了一个线上的windows服务器,原来的内存48g,现在2g.项目启动报内存不足.又重新安装jre 安装jre 教程链接:(谢谢各位博友) https://www.genban.org/t ...

  7. rem布局,在用户调整手机字体大小/用户调整浏览器字体大小后,布局错乱问题

    一.用户调整浏览器字体大小,影响的是从浏览器打开的web页. 浏览器设置字体大小,影响浏览器打开的页面.通过js可控制用户修改字体大小,使页面不受影响. (function(doc, win) { / ...

  8. 微服务、分库分表、分布式事务管理、APM链路跟踪性能分析演示项目

    好多年没发博,最近有时间整理些东西,分享给大家. 所有内容都在github项目liuzhibin-cn/my-demo中,基于SpringBoot,演示Dubbo微服务 + Mycat, Shardi ...

  9. Crush 算法以及PG和PGP调整经验

    PG和PGP调整经验调整前准备为了降低对业务的影响,需要调整以下参数ceph tell osd.* injectargs ‘–osd-max-backfills 1’ceph tell osd.* i ...

随机推荐

  1. 用算法去扫雷(go语言)

    最初的准备 首先得完成数据的录入,及从扫雷的程序读取界面数据成为我的算法可识别的数据 其次是设计扫雷的算法,及如何才能判断格子是雷或者可以点击鼠标左键和中键. 然后将步骤2的到的结果通过我的程序实现鼠 ...

  2. 2020年9月程序员工资统计,平均14459元!你给程序员拖后腿了吗?https://jq.qq.com/?_wv=1027&k=JMPndqoM

    2020年9月全国招收程序员362409人.2020年9月全国程序员平均工资14459元,工资中位数12500元,其中95%的人的工资介于5250元到35000元. 工资与上个月持平,但是岗位有所增加 ...

  3. Lock、Synchronized锁区别解析

    上篇博文在讲解 ConcurrentHashMap 时说到 1.7 中 put 方法实现同步的方式是使用继承了 ReentrantLock 类的 segment 内部类调用 lock 方法实现的,而在 ...

  4. BASH提示符颜色、显示返回值,终端标题显示当前目录与正在执行的命令

    BASH的PS1变量控制提示符相关的东西,善用它可以让BASH用起来舒服很多 提示符颜色 提示符显示上一个命令的返回值(exit code),并根据是否0调整颜色 提示符生成的时间(这样就知道上一条命 ...

  5. 自定义常用input表单元素一:纯css 实现自定义checkbox复选框

    最下面那个是之前写的  今天在做项目的时候发现,之前写的貌似还是有点多,起码增加的span标签可以去掉,这样保持和原生相同的结构最好的,仅仅是样式上的变化.今天把项目中的这个给更新上来.下面就直接还是 ...

  6. python自测100题

    如果你在寻找python工作,那你的面试可能会涉及Python相关的问题. 通过对网络资料的收集整理,本文列出了100道python的面试题以及答案,你可以根据需求阅读测试.如果你看了还是不懂可以加我 ...

  7. java 常用快捷键及命令积累

    ctl + shift + o--->导入所需包,删掉没有被引用的包 ctl + / --->添加多行注释 ctl + \--->删除多行注释

  8. H5页面字体设置

    H5页面不支持 MicrosoftYaHei(微软雅黑)别傻傻的设置微软雅黑字体了 如果一定要微软雅黑操作如下 @font-face 定义为微软雅黑字体并存放到 web 服务器上,在需要使用时被自动下 ...

  9. BIO编程

    在实际的工作开发中,传统的模型有client/service模型.client端和service端要进行通信的话,有一种套接字的方式.传统的socket编程,包含一个socket服务端和一到多个soc ...

  10. python的多线程和java的多线程之间的区别

    在python中,由于Cpython解释器的全局解释器的存在,那么多线程的话在同一时刻只能有一个线程执行,意思就是python中的多线程只能并发执行, 没有办法实现真正的并行,也就是无法利用多核CPU ...