题链:

https://vjudge.net/problem/UVA-11346
题解:

连续概率,积分
由于对称性,我们只用考虑第一象限即可。
如果要使得面积大于S,即xy>S,
那么可以选取的点必须在双曲线xy=S的第一象限那一支的左上方。
也就是要求左下角在原点,长宽分别为a,b的矩形与双曲线的一支围成的面积。

所以由积分可得:我们要求的面积$$S'=a×b-S-S×\int_{S/b}^{a}\frac{1}{x}dx$$
因为$y=\frac{1}{x}$的原函数为$y=ln(x)$
所以$$S'=a×b-S-S×ln(a)/ln(S/b)=a×b-S-S×ln(a×b/S)$$
所以概率就是S' / a×b啦。
注意特判概率为1和0的情况。

代码:

#include<bits/stdc++.h>
using namespace std;
const double eps=1e-8;
int Case;
double a,b,s;
bool dcmp(double x){
if(fabs(x)<=eps) return 0;
return x>0?1:-1;
}
int main(){
cout<<fixed<<setprecision(6);
for(scanf("%d",&Case);Case;Case--){
scanf("%lf%lf%lf",&a,&b,&s);
if(s>a*b){
cout<<(double)0<<"%"<<endl;
continue;
}
if(dcmp(s)==0){
cout<<(double)100<<"%"<<endl;
continue;
}
cout<<(a*b-s-s*log(a*b/s))/a/b*100<<"%"<<endl;
}
return 0;
}

  

●UVa 11346 Probability的更多相关文章

  1. uva 11346 - Probability(概率)

    option=com_onlinejudge&Itemid=8&page=show_problem&problem=2321">题目链接:uva 11346 - ...

  2. uva 11346 - Probability(可能性)

    题目链接:uva 11346 - Probability 题目大意:给定x,y的范围.以及s,问说在该范围内选取一点,和x,y轴形成图形的面积大于s的概率. 解题思路:首先达到方程xy ≥ s.即y ...

  3. UVA - 11346 Probability (概率)

    Description Probability Time Limit: 1 sec  Memory Limit: 16MB Consider rectangular coordinate system ...

  4. UVa 11346 - Probability(几何概型)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. UVA 11346 - Probability 数学积分

    Consider rectangular coordinate system and point L(X, Y ) which is randomly chosen among all pointsi ...

  6. UVA 11346 Probability (几何概型, 积分)

    题目链接:option=com_onlinejudge&Itemid=8&page=show_problem&problem=2321">https://uva ...

  7. UVa 11346 Probability (转化+积分+概率)

    题意:给定a,b,s,在[-a, a]*[-b, b]区域内任取一点p,求以原点(0,0)和p为对角线的长方形面积大于s的概率. 析:应该明白,这个和高中数学的东西差不多,基本就是一个求概率的题,只不 ...

  8. UVA 11346 Probability

    题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 3 10 5 20 1 1 1 2 2 0 输出样例#1: 23.348371% 0.000000% 100.00 ...

  9. UVA 11346 Probability 概率 (连续概率)

    题意:给出a和b,表示在直角坐标系上的x=[-a,a] 和 y=[-b,b]的这样一块矩形区域.给出一个数s,问在矩形内随机选择一个点p=(x,y),则(0.0)和p点组成的矩形面积大于s的概率是多少 ...

随机推荐

  1. Week1绪论--抽象数据类型

    一.作业题目 1.构造有理数T,元素e1,e2分别被赋以分子.分母值 2.销毁有理数T 3.用e(引用类型参数)返回有理数T的分子或分母,当入参i为1时返回分子, i为2是返回分母. 4.将有理数T的 ...

  2. day9

    Alpha冲刺Day9 一:站立式会议 今日安排: 经过为期5天的冲刺,基本完成企业人员模块的开发.因第三方机构与企业存在委托的关系.第三方人员对于风险的自查.风险列表的展示以及自查风险的统计展示(包 ...

  3. 手把手教你 LabVIEW 串口仪器控制——VISA 驱动下载安装篇

           仪器控制,核心在于 VISA 函数..有些仪器可能不需要 VISA,有自己的 DLL 什么的,我就管不着.        正常情况下,大家安装的 LabVIEW,都是不带 VISA 驱动 ...

  4. Flask-uploads 简单使用

    pip install flask-uploads#先导入次此处需要用到的库: from flask_uploads import UploadSet, IMAGES, configure_uploa ...

  5. bzoj千题计划245:bzoj1095: [ZJOI2007]Hide 捉迷藏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1095 查询最远点对,带修改 显然可以用动态点分治 对于每个点,维护两个堆 堆q1[x] 维护 点分树 ...

  6. raid5 阵列硬盘离线数据恢复成功案例

    数据恢复故障描述: 某研究院 DELL 磁盘阵列崩溃,内置15块1TB硬盘搭建的RAID5阵列.一开始有一块硬盘离线,在更换新硬盘进行同步的过程中,第二块磁盘指示灯报警,同步失败,阵列无法正常工作. ...

  7. nyoj 矩形个数

    矩形的个数 时间限制:1000 ms  |  内存限制:65535 KB 难度:1   描述 在一个3*2的矩形中,可以找到6个1*1的矩形,4个2*1的矩形3个1*2的矩形,2个2*2的矩形,2个3 ...

  8. 遍历JSON

    第一种: each,不做详细说明,太常用了 第二种:我用来遍历单个组,实现前端界面绑定 for(var item in person){ alert("person中"+item+ ...

  9. 记一次oracle crs无法重启事故

    今天在修改了数据库参数后,关闭数据库及crs,然后重新启动了服务器,服务器启动完成之后,发现数据库无法启动,过程如下: step1:重启数据库 $ su - grid $ srvctl stop da ...

  10. linux系统命令学习系列-例行任务管理at命令

    先来复习一下上节内容: 切换用户身份命令su 以root身份执行操作命令sudo 作业:给user1配置sudo权限,不用密码,可执行useradd命令 在/etc/sudoers文件中添加如下配置项 ...