●BZOJ 4516 [Sdoi2016]生成魔咒
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=4516
题解:
把串反过来后,问题变为求每个后缀的互不相同的子串个数。
首先用倍增算法求出 sa[],rank[],height[],然后对 height[]数组建立 ST表。
接着求出整个串的子串个数,ans+=N-sa[i]-height[i]。(我从0开始编号的)
式子的含义就是考虑每个后缀相比它的前一名,多了几个与之前不同的且串头为该后缀的头的子串。
(一定要清晰地懂得并理解那个式子哦)
之前得出了0 位置开始的后缀(即整个串)的子串个数,
那么现在就需要把 rank[0]这个后缀从排好序的后缀数组中去除。
然后维护出新的后缀(即从1位置开始的后缀)的子串个数。
怎么做呢,反向考虑 ans的求法:
即把rank[0]产生的贡献减去(包括和它上面一名以及和它下面一名产生的贡献),相当于该后缀被去除了。
这时排在rank[0]上面一位的后缀(设为 u),和排在rank[0]下面一位的后缀(设为 d),
就挨在了一起,那么要加上 u 后缀和 d 后缀的贡献。
然后就得到了新的后缀的子串个数。
之后的其它后缀的计算就类似了。
另外再提一下,在找当前后缀的上一名后缀和下一名后缀时,找到的必须是还在后缀数组中(即还没有被去除),
可以用类似并查集的思想维护(好吧,是路径压缩的思想),做到均摊 O(1)。
除开倍增算法和求ST表的复杂度 O(N)
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 100500
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
int sa[MAXN],rak[MAXN],hei[MAXN];
int up[MAXN],down[MAXN],A[MAXN],log2[MAXN],stm[MAXN][20];
bool vis[MAXN];
void build(int N,int M){
static int cc[MAXN],ta[MAXN],tb[MAXN],*x,*y,h,p;
x=ta; y=tb; h=0; A[N]=-1;
for(int i=0;i<M;i++) cc[i]=0;
for(int i=0;i<N;i++) cc[x[i]=A[i]]++;
for(int i=1;i<M;i++) cc[i]+=cc[i-1];
for(int i=N-1;i>=0;i--) sa[--cc[x[i]]]=i;
for(int k=1;p=0,k<N;k<<=1){
for(int i=N-k;i<N;i++) y[p++]=i;
for(int i=0;i<N;i++) if(sa[i]>=k) y[p++]=sa[i]-k;
for(int i=0;i<M;i++) cc[i]=0;
for(int i=0;i<N;i++) cc[x[y[i]]]++;
for(int i=1;i<M;i++) cc[i]+=cc[i-1];
for(int i=N-1;i>=0;i--) sa[--cc[x[y[i]]]]=y[i];
swap(x,y); y[N]=-1; x[sa[0]]=0; M=1;
for(int i=1;i<N;i++)
x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]?M-1:M++;
if(M>=N) break;
}
for(int i=0;i<N;i++) rak[sa[i]]=i;
for(int i=0,j;i<N;i++){
if(h) h--;
if(rak[i]){
j=sa[rak[i]-1];
while(A[i+h]==A[j+h]) h++;
}
stm[rak[i]][0]=hei[rak[i]]=h;
}
for(int k=1;k<=log2[N];k++)
for(int i=(1<<k)-1;i<N;i++)
stm[i][k]=min(stm[i-(1<<(k-1))][k-1],stm[i][k-1]);
}
int query(int l,int r,int N){
static int k;
if(l==-1||r==-1||l==N||r==N) return 0;
if(l>r) swap(l,r); l++;
k=log2[r-l+1];
return min(stm[l+(1<<k)-1][k],stm[r][k]);
}
int find(int i,int *to,const int &N){
if(i==-1||i==N||!vis[i]) return i;
return to[i]=find(to[i],to,N);
}
void solve(int N){
static long long now,ANS[MAXN];
for(int i=1;i<N;i++) up[i]=i-1,down[i-1]=i; up[0]=-1; down[N-1]=N;
for(int i=0;i<N;i++) now+=1ll*N-sa[i]-hei[i];
ANS[N]=now; sa[N]=N;
for(int i=0,r,u,d;i<N-1;i++){
r=rak[i]; vis[r]=1; u=find(r,up,N); d=find(r,down,N);
now-=1ll*N-sa[r]-query(u,r,N);
now-=1ll*N-sa[d]-query(d,r,N);
now+=1ll*N-sa[d]-query(u,d,N);
ANS[N-i-1]=now;
}
for(int i=1;i<=N;i++) printf("%lld\n",ANS[i]);
}
int main()
{
filein(incantation);fileout(incantation);
static int tmp[MAXN];
log2[1]=0; for(int i=2;i<=100000;i++) log2[i]=log2[i>>1]+1;
int N,cnt; scanf("%d",&N);
for(int i=N-1;i>=0;i--) scanf("%d",&A[i]),tmp[i]=A[i];
sort(tmp,tmp+N);
cnt=unique(tmp,tmp+N)-tmp;
for(int i=0;i<N;i++) A[i]=lower_bound(tmp,tmp+cnt,A[i])-tmp;
build(N,N);
solve(N);
return 0;
}
●BZOJ 4516 [Sdoi2016]生成魔咒的更多相关文章
- BZOJ 4516: [Sdoi2016]生成魔咒 [后缀自动机]
4516: [Sdoi2016]生成魔咒 题意:询问一个字符串每个前缀有多少不同的子串 做了一下SDOI2016R1D2,题好水啊随便AK 强行开map上SAM 每个状态的贡献就是\(Max(s)-M ...
- BZOJ 4516. [Sdoi2016]生成魔咒【SAM 动态维护不同子串数量】
[Sdoi2016]生成魔咒 动态维护不同子串的数量 想想如果只要查询一次要怎么做,那就是计算各个点的\(len[u]-len[link[u]]\)然后求和即可,现在要求动态更新,我们可以保存一个答案 ...
- 【刷题】BZOJ 4516 [Sdoi2016]生成魔咒
Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例 ...
- BZOJ 4516: [Sdoi2016]生成魔咒
Description 给出一串数字,求每次插入一个数字后本质不同的子串. Sol SAM. 在 SAM 上添加节点的时候统计一下 \(val[np]-val[par[np]]\) 就可以了... 用 ...
- BZOJ 4516: [Sdoi2016]生成魔咒 后缀自动机 性质
http://www.lydsy.com/JudgeOnline/problem.php?id=4516 http://blog.csdn.net/doyouseeman/article/detail ...
- BZOJ 4516: [Sdoi2016]生成魔咒——后缀数组、并查集
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4516 题意 一开始串为空,每次往串后面加一个字符,求本质不同的子串的个数,可以离线.即长度为 ...
- BZOJ.4516.[SDOI2016]生成魔咒(后缀数组 RMQ)
题目链接 后缀自动机做法见这(超好写啊). 后缀数组是可以做的: 本质不同的字符串的个数为 \(子串个数-\sum_{ht[i]}\),即 \(\frac{n(n+1)}{2}-\sum_{ht[i] ...
- BZOJ.4516.[SDOI2016]生成魔咒(后缀自动机 map)
题目链接 后缀数组做法见这. 直接SAM+map.对于每个节点其产生的不同子串数为len[i]-len[fa[i]]. //15932kb 676ms #include <map> #in ...
- BZOJ 4516 [Sdoi2016]生成魔咒 ——后缀自动机
本质不同的字串,考虑SA的做法,比较弱,貌似不会. 好吧,只好用SAM了,由于后缀自动机的状态最简的性质, 所有不同的字串就是∑l[i]-l[fa[i]], 然后后缀自动机是可以在线的,然后维护一下就 ...
随机推荐
- java克隆之深拷贝与浅拷贝
版权声明:本文出自汪磊的博客,转载请务必注明出处. Java深拷贝与浅拷贝实际项目中用的不多,但是对于理解Java中值传递,引用传递十分重要,同时个人认为对于理解内存模型也有帮助,况且面试中也是经常问 ...
- 09-移动端开发教程-Sass入门
1. 引言 CSS3之前的CSS都大都是枚举属性样式,而编程语言强大的变量.函数.循环.分支等功能基本都不能在CSS中使用,让CSS的编程黯淡无光,Sass就是一种增强CSS编程的扩展语言(CSS4也 ...
- 读取.properties的内容1
属性文件方便于项目进行更改,在项目开发中用的也是非常的普遍,在这里就把属性文件的读取通过代码进行一个小结: package com.oyy.test; import java.io.BufferedI ...
- python之路--day6--字符编码
一.知识储备 cpu--控制和运算 内存--暂时存储cpu需要的数据 硬盘--永久保存数据2.文本编辑器的原理存储原理 1,启动文本编辑器 2,在编辑器上输入内容---此时输入内容还在内存上 3,保存 ...
- New UWP Community Toolkit - RotatorTile
概述 UWP Community Toolkit 中有一个为图片或磁贴提供轮播效果的控件 - RotatorTile,本篇我们结合代码详细讲解 RotatorTile 的实现. RotatorTi ...
- OpenID Connect 是什么?
一.OpenID Connect的概念 1.OpenID Connect 是什么? OpenID Connect 是一套基于 OAuth 2.0 协议的轻量级规范,提供通过 API 进行身份交互的框架 ...
- Linux下安装Python3.x和第三方库
如果本机安装了python2,尽量不要管他,使用python3运行python脚本就好,因为可能有程序依赖目前的python2环境, 比如yum!!!!! 不要动现有的python2环境! 不要动现有 ...
- POJ-3295 Tautology---栈+表达式求值
题目链接: https://vjudge.net/problem/POJ-3295 题目大意: 输入由p.q.r.s.t.K.A.N.C.E共10个字母组成的逻辑表达式WFF 其中 ...
- 1.7 理解dropout
Dropout为什么有正则化的作用? 下面来直观理解一下. 上面讲到,dropout每次迭代都会让一部分神经元失活,这样使得神经网络会比原始的神经网络规模变小,因此采用一个较小神经网络好像和使用正则化 ...
- html标记语言 --表单
html标记语言 --表单 七.表单 1.表单标记 1.1表单中的内容 <form></form>定义表单的开始位置和结束位置,表单提交时的内容就是<form>表单 ...