基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 收藏
 关注
F(n) = (n % 1) + (n % 2) + (n % 3) + ...... (n % n)。其中%表示Mod,也就是余数。

例如F(6) = 6 % 1 + 6 % 2 + 6 % 3 + 6 % 4 + 6 % 5 + 6 % 6 = 0 + 0 + 0 + 2 + 1 + 0 = 3。
给出n,计算F(n), 由于结果很大,输出Mod 1000000007的结果即可。
 
Input
输入1个数N(2 <= N <= 10^12)。
Output
输出F(n) Mod 1000000007的结果。
Input示例
6
Output示例
3

这种东西莫比乌斯已经用过很多次了本来看到了想十分钟写完行了不发Blog结果WA的太惨了!!!
做法很简单,余数=n-[n/i]*i
然后一整理整除分块+等比数列搞就行了
问题:
1.等比数列/2要用逆元,只用到2的逆元所以先算出来直接用就好了,否则会T
2.一定要小心,n*n也会爆ll,所以(n%MOD)&(n%MOD),括号不能丢,因为10^9*10^12也会爆ll
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const ll MOD=1e9+;
ll n,ans,r,Inv2;
ll Pow(ll a,int b){
ll re=;
for(;b;b>>=,a=a*a%MOD)
if(b&) re=re*a%MOD;
return re;
}
ll calc(ll l,ll r){return ((l+r)%MOD)*((r-l+)%MOD)%MOD*Inv2%MOD;}
int main(){
//freopen("in","r",stdin);
Inv2=Pow(,MOD-);
scanf("%lld",&n);
for(ll i=;i<=n;i=r+){
r=n/(n/i);
ans=(ans+(n/i)%MOD*calc(i,r)%MOD)%MOD;
}
n%=MOD;
printf("%lld",(n*n%MOD-ans+MOD)%MOD);
}

51Nod 1225 余数之和 [整除分块]的更多相关文章

  1. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...

  2. 51nod 1225 余数之和 数论

    1225 余数之和 题目连接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225 Description F(n) ...

  3. 51Nod 1225 余数之和 —— 分区枚举

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225 1225 余数之和  基准时间限制:1 秒 空间限制:1 ...

  4. bzoj1257: [CQOI2007]余数之和 整除分块

    题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod ...

  5. BZOJ1257: [CQOI2007]余数之和——整除分块

    题意 求 $\sum _{i=1}^n k \ mod \ i$($1\leq n,k\leq 10^9$). 分析 数据范围这么大 $O(n)$ 的复杂度也挺不住啊 根据取模的意义,$k \ mod ...

  6. 51nod 1225:余数之和

    传送门 题意 略 分析 \(\sum_i^n(n\%i)=\sum_i^n(n-i*n/i)=n^2-\sum_i^ni*n/i\) \(=\sum r\sum_i^ni[n/i==r]\) 可以证明 ...

  7. 51nod 1225 余数的和 数学

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

  8. bzoj1257[CQOI2007]余数之和(除法分块)

    1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 6117  Solved: 2949[Submit][Statu ...

  9. P2261 [CQOI2007]余数求和[整除分块]

    题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...

随机推荐

  1. CentOS 6.5 编译安装 LNMP环境

    建立一个软件包目录存放 mkdir -p /usr/local/src/ 清理已经安装包 rpm -e httpd rpm -e mysql rpm -e php yum -y remove http ...

  2. Spider_Man_3 の selenium

    一:介绍 selenium最初是一个自动化测试工具,而爬虫中使用它主要是为了解决requests无法直接执行JavaScript代码的问题 selenium本质是通过驱动浏览器,完全模拟浏览器的操作, ...

  3. SDP(1):ScalikeJDBC-基本操作介绍

    简单来说:JDBC是一种开放标准的跨编程语言.跨数据库类型编程API.各类型数据库产品厂商都会按它的标准要求来提供针对自身产品的JDBC驱动程序.最主要的这是一套成熟的工具,在编程人员中使用很普及.既 ...

  4. sql for xml 输出结果带单引号出现转成&apos的解决方案

    select '''' + ID +''',' from  表 for xml path('') 此SQL语句,输出结果如‘1’,’2‘,’3‘, 但是在因xml会出现path转译的问题将‘转成&am ...

  5. C语言mktime()

    最近在调试stm32L151单片机,因为业务需要将从RTC获取的时间转换成时间戳.转换的时候发现获取的时间一直不对.一直被两个问题困扰. 1.从RTC获取出来的月份为什么比实际月份小1? 2.转换得来 ...

  6. 用thinkphp开启伪静态,用wamp开启很快搞定;但是用phpstudy总是开启失败,为什么?

    https://segmentfault.com/q/1010000005100662 thinkphp应用的根目录下.htaccess中的内容是: <IfModule mod_rewrite. ...

  7. LAMP环境跟LNMP环境有什么不同,主要用什么地方

    LAMP即Linux+Apache+Mysql/MariaDB+Perl/PHP/Python Linux+Apache+Mysql/MariaDB+Perl/PHP/Python一组常用来搭建动态网 ...

  8. 关于iconfont字体图标的使用

    今天用iconfont遇到了字体图标的使用问题.关于使用字体图标的方式在这里有介绍三种方式(css和js的引入和平时一样) 首先你要分清是用单个字体图标icon,还是多个字体图标icon 关于使用代码 ...

  9. JavaScript获取当前url根目录(路径)

    jsp: <%@ page language="java" import="java.util.*" pageEncoding="UTF-8&q ...

  10. javascript如何自动去除所有空格?

    1.jquery自带了trim方法:    $.trim(" abc ") // abc 2.自己写方法: function trim(str) { return str.repl ...