传送门

题意:

两个数$x,y$,一个人的决策为让大数减去小数的任意倍数(结果不能为负),出现0的人胜

一堆这样的游戏同时玩


Every-SG 游戏规定,对于还没有结束的单一游戏,游戏者必须对该游戏进行一步决策;

贪心:先手必胜的尽量长,先手必败的尽量短

对于Every-SG 游戏先手必胜当且仅当单一游戏中最大的step 为奇数。

$step(u) =$

\begin{cases}
0, & \text{$u为终止状态$}\\
max\{step(v)\}+1, & \text{ $sg(u)\neq 0\land v为u的后继\land sg(v)=0$ }\\
min\{step(v)\}+1, & \text{$sg(u)=0\land v为u的后继$}
\end{cases}

单个游戏,好熟悉啊,这不那个欧几里得游戏嘛

容易发现$a/b > 2$必胜,因为这时候掌握了主动权

然后$dfs$就好啦

$pair$还挺快的嘛

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define pii pair<int,int>
#define MP make_pair
#define fir first
#define sec second
typedef long long ll;
const int N=1e3+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int n;
pii sg[N][N];
pii dfs(int a,int b){
if(a<b) swap(a,b);
pii &now=sg[a][b];
if(now.fir!= || b==) return now; int k=a/b;pii f=dfs(b,a%b);
if(k==) now=MP(f.fir^,f.sec+);
else{
now=MP(,f.sec+);
if(f.fir) now.sec++;
}
return now;
}
int main(){
freopen("in","r",stdin);
while(scanf("%d",&n)!=EOF){
int mx=;
for(int i=;i<=n;i++) mx=max( mx,dfs(read(),read()).sec );
if(mx&) puts("MM");
else puts("GG");
}
}

HDU 3595 GG and MM [Every-SG]的更多相关文章

  1. hdu 3595 GG and MM 博弈论

    同时进行,必须操作这就是Every-SG的特点 同样在贾志豪的论文中有提到这种游戏:组合游戏略述——浅谈SG游戏的若干拓展及变形 其中这个游戏特点不仅有必胜和必败,而且有时间长短的博弈,对于自己必胜的 ...

  2. GG and MM HDU - 3595 Every-SG

    $ \color{#0066ff}{ 题目描述 }$ 两堆石子,GG和MM轮流取,每次在一堆石子中取另一堆石子的k\((k\ge1)\)倍,不能操作的输 现在二人要玩n个这样的游戏,每回合每个人对每个 ...

  3. HDU 3595 every-sg模型

    多个子游戏同时进行,每个子游戏给出两个数a,b,可以将大的数减去k倍小的数,不能操作者输. 策略就是对于一个必胜的游戏要使得步数更长,对于一个必败的游戏使得步数最短. 以下都来自贾志豪的论文.. 对于 ...

  4. 【HDU3595】GG and MM(博弈论)

    [HDU3595]GG and MM(博弈论) 题面 HDU 一个游戏由多个游戏组成,每次每个操作者必须操作所有可以操作的游戏,操作集合为空者输. 每个游戏由两堆石子组成,每次可以从较多的那一堆中取走 ...

  5. Java网络编程-你是GG还是MM?

    第六阶段 网络编程 每一台计算机通过网络连接起来,达到了数据互动的效果,而网络编程所解决的问题就是如何让程序与程序之间实现数据的通讯与互动 在吗?你是GG还是MM? (一) 网络模型概述 (1) 两大 ...

  6. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  7. HDU 5795 A Simple Nim(SG打表找规律)

    SG打表找规律 HDU 5795 题目连接 #include<iostream> #include<cstdio> #include<cmath> #include ...

  8. HDU 1079 Calendar Game (博弈论-sg)

    版权声明:欢迎关注我的博客,本文为博主[炒饭君]原创文章.未经博主同意不得转载 https://blog.csdn.net/a1061747415/article/details/32336485 C ...

  9. hdu 3032 Nim or not Nim? sg函数 难度:0

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. Windows系统下文件的概念及c语言对其的基本操作(甲)

    文件概念

  2. c++(合并排序)

    前面一篇博客提到的快速排序是排序算法中的一种经典算法.和快速排序一样,合并排序是另外一种经常使用的排序算法.那么合并排序算法有什么不同呢?关键之处就体现在这个合并上面.    合并算法的基本步骤如下所 ...

  3. App Doc View Frame中指针的获取

    // App中获取其它三项指针 void CSDIApp::OnApp() { // App // Doc CDocument *pDoc = ((CFrameWndEx *)m_pMainWnd)- ...

  4. 10个html5增加的重要新特性和内容

    文章开篇之前我们先了解一下什么是html5,百度上是这样定义html5的:万维网的核心语言.标准通用标记语言下的一个应用超文本标记语言(HTML)的第五次重大修改. 其实说白了html5也就是人为定义 ...

  5. ArcGIS中实现指定面积蜂窝(正六边形)方法

    本篇博文为博主(whgiser)原创,转载请注明. 空间聚集研究中,地理尺度大多数都是基于格网构建的,只需fishnet下就行了.也常有使用社区.交通小区(TZ)作为研究单元的.直到发现蜂窝网络做出的 ...

  6. python+appium+unittest

    一个流行语言,一个主流工具,一个实用框架: For android 实例如下: import unittest from appium import webdriver from time impor ...

  7. PHP性能分析工具xhprof的安装使用与注意事项

    前言 xhprof由facebook开源出来的一个PHP性能监控工具,占用资源很少,甚至能够在生产环境中进行部署. 它可以结合graphviz使用,能够以图片的形式很直观的展示代码执行耗时. 下面主要 ...

  8. mysql中使用show table status 查看表信息

    学习标签: mysql 本文导读:在使用mysql数据库时,经常需要对mysql进行维护,查询每个库.每个表的具体使用情况,Mysql数据库可以通过执行SHOW TABLE STATUS命令来获取每个 ...

  9. vuethink 在本地没问题,在服务器报错 , php5.6与php5.5之间的大坑

    将环境换为php5.6即可

  10. PHP面试题:HTTP中POST、GET、PUT、DELETE方式的区别

    HTTP定义了与服务器交互的不同的方法,最基本的是POST.GET.PUT.DELETE,与其比不可少的URL的全称是资源描述符,我们可以这样理解:url描述了一个网络上资源,而post.get.pu ...