觉得有用的话,欢迎一起讨论相互学习~Follow Me

4.2 深层神经网络中的前向传播

4.3 核对矩阵的维数

经验方法论

对于神经网络想增加得到没有bug的程序的概率的方法:需要仔细的思考矩阵的维数,Angrew自己在调试bug时自己会不断的看自己写的神经网络中矩阵的维度.


4.4 为什么使用深层表示



如果在建立一个人脸识别系统,那么你可以吧神经网络的第一层当成一个特征探测器或者边缘探测器,例如第一层神经元就会找特征图中相对应的边缘的方向,对于第二层隐藏层可以将被探测到的边缘组合成面部的不同部分,比如有可能有的神经元回去找眼睛的部分,有的去找鼻子的部分,然后把这些不同的边缘组合在一起就可以开始检测人脸的不同部分.最后再把人脸的不同部分例如鼻子眼睛等组合起来就可以识别或者探测不同的人脸了(例如第三层神经元所做的这样).所以你可以把神经网络的前几层当做是探测简单的函数,比如边缘之后再把他们和后几层结合在一起,那么总体上就可以学习更多复杂的函数.

深层神经网络也可用在其他的地方,比如你想要搭建一个语音识别系统的时候,需要解决的就是如何可视化语音,比如输入一个音频片段,那么神经网络的第一层就会开始试着去探测比较低层次的音频波形的一些特征,比如音调是变高了还是变低了,还有分辨白噪声等等.然后把这些特征组合在一起就能去探测声音的基本单元.在语言学中有个概念叫做音位,有这些声音的基本单元后就能识别音频中的单词,单词组合起来就能识别词组,再到完整的词组.

[DeeplearningAI笔记]神经网络与深度学习4.深度神经网络的更多相关文章

  1. 深度学习之卷积神经网络(CNN)

    卷积神经网络(CNN)因为在图像识别任务中大放异彩,而广为人知,近几年卷积神经网络在文本处理中也有了比较好的应用.我用TextCnn来做文本分类的任务,相比TextRnn,训练速度要快非常多,准确性也 ...

  2. 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别

    验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...

  3. 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别

    深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...

  4. 深度学习之卷积神经网络CNN及tensorflow代码实例

    深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...

  5. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  6. 【神经网络与深度学习】卷积神经网络(CNN)

    [神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合 ...

  7. deeplearning.ai 神经网络和深度学习 week4 深层神经网络 听课笔记

    1. 计算深度神经网络的时候,尽量向量化数据,不要用for循环.唯一用for循环的地方是依次在每一层做计算. 2. 最常用的检查代码是否有错的方法是检查算法中矩阵的维度. 正向传播: 对于单个样本,第 ...

  8. 学习笔记︱Nvidia DIGITS网页版深度学习框架——深度学习版SPSS

    DIGITS: Deep Learning GPU Training System1,是由英伟达(NVIDIA)公司开发的第一个交互式深度学习GPU训练系统.目的在于整合现有的Deep Learnin ...

  9. TensorFlow深度学习!构建神经网络预测股票价格!⛵

    作者:韩信子@ShowMeAI 深度学习实战系列:https://www.showmeai.tech/tutorials/42 TensorFlow 实战系列:https://www.showmeai ...

  10. 一天搞懂深度学习-训练深度神经网络(DNN)的要点

    前言 这是<一天搞懂深度学习>的第二部分 一.选择合适的损失函数 典型的损失函数有平方误差损失函数和交叉熵损失函数. 交叉熵损失函数: 选择不同的损失函数会有不同的训练效果 二.mini- ...

随机推荐

  1. Elastic Stack之kibana入门

    为了解决公司的项目在集群环境下查找日志不便的问题,我在做过简单调研后,选用Elastic公司的Elastic Stack产品作为我们的日志收集,存储,分析工具. Elastic Stack是ELK(E ...

  2. faster-rcnn系列笔记(一)

    目录: 1. 序言 2.正文 2.1  关于ROI 2.2  关于RPN 2.3 关于anchor 3. 关于数据集合制作 4. 关于参数设置 5. 参考 1.序言 叽歪一下目标检测这个模型吧,这篇笔 ...

  3. SpringBoot(四)之thymeleaf的使用

    这篇文章将更加全面详细的介绍thymeleaf的使用.thymeleaf 是新一代的模板引擎,在spring4.0中推荐使用thymeleaf来做前端模版引擎. thymeleaf介绍 简单说, Th ...

  4. ACM_高次同余方程

    /*poj 3243 *解决高次同余方程的应用,已知 X^Y = K mod Z, 及X,Z,K的值,求 Y 的值 */ #include<cstdio> #include<cstr ...

  5. c++(快速排序)

    快速排序是编程中经常使用到的一种排序方法.可是很多朋友对快速排序有畏难情绪,认为快速排序使用到了递归,是一种非常复杂的程序,其实未必如此.只要我们使用好了方法,就可以自己实现快速排序. 首先,我们复习 ...

  6. volatile 与 synchronized 区别

    在Java中,为了保证多线程读写数据时保证数据的一致性,可以采用两种方式: 同步 如用synchronized关键字,或者使用锁对象. volatile 使用volatile关键字用一句话概括vola ...

  7. SSH中后台传到前台一个信息集合,tr td中怎么进行排列,类似在一个div里排列书籍

    总觉得描述问题不对,这里详细说一下,就是把下面图片变成排列整齐,一行四个,多出来的两个排到下一行. 我问过群里的,给的答案都有些简介:1:后台排好了,前台循环出来: 2:前台直接循环,多出来的加< ...

  8. 三分钟使用webpack-dev-sever搭建一个服务器

    webpack-dev-server是一个小型的Node.js Express服务器,我们可以通过它搭建一个本地服务器,并且实现文件热更新; 1.切换到你的目录下对项目进行初始化 npm init 一 ...

  9. GDI绘制时钟效果,与系统时间保持同步,基于Winform

    2018年工作之余,想起来捡起GDI方面的技术,特意在RichCodeBox项目中做了两个示例程序,其中一个就是时钟效果,纯C#开发.这个CSharpQuartz是今天上午抽出一些时间,编写的,算是偷 ...

  10. css样式小记

    溢出文字展现为... .over-hidd { white-space: nowrap; text-overflow: ellipsis; overflow: hidden; }