觉得有用的话,欢迎一起讨论相互学习~Follow Me

4.2 深层神经网络中的前向传播

4.3 核对矩阵的维数

经验方法论

对于神经网络想增加得到没有bug的程序的概率的方法:需要仔细的思考矩阵的维数,Angrew自己在调试bug时自己会不断的看自己写的神经网络中矩阵的维度.


4.4 为什么使用深层表示



如果在建立一个人脸识别系统,那么你可以吧神经网络的第一层当成一个特征探测器或者边缘探测器,例如第一层神经元就会找特征图中相对应的边缘的方向,对于第二层隐藏层可以将被探测到的边缘组合成面部的不同部分,比如有可能有的神经元回去找眼睛的部分,有的去找鼻子的部分,然后把这些不同的边缘组合在一起就可以开始检测人脸的不同部分.最后再把人脸的不同部分例如鼻子眼睛等组合起来就可以识别或者探测不同的人脸了(例如第三层神经元所做的这样).所以你可以把神经网络的前几层当做是探测简单的函数,比如边缘之后再把他们和后几层结合在一起,那么总体上就可以学习更多复杂的函数.

深层神经网络也可用在其他的地方,比如你想要搭建一个语音识别系统的时候,需要解决的就是如何可视化语音,比如输入一个音频片段,那么神经网络的第一层就会开始试着去探测比较低层次的音频波形的一些特征,比如音调是变高了还是变低了,还有分辨白噪声等等.然后把这些特征组合在一起就能去探测声音的基本单元.在语言学中有个概念叫做音位,有这些声音的基本单元后就能识别音频中的单词,单词组合起来就能识别词组,再到完整的词组.

[DeeplearningAI笔记]神经网络与深度学习4.深度神经网络的更多相关文章

  1. 深度学习之卷积神经网络(CNN)

    卷积神经网络(CNN)因为在图像识别任务中大放异彩,而广为人知,近几年卷积神经网络在文本处理中也有了比较好的应用.我用TextCnn来做文本分类的任务,相比TextRnn,训练速度要快非常多,准确性也 ...

  2. 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别

    验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...

  3. 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别

    深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...

  4. 深度学习之卷积神经网络CNN及tensorflow代码实例

    深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...

  5. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  6. 【神经网络与深度学习】卷积神经网络(CNN)

    [神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合 ...

  7. deeplearning.ai 神经网络和深度学习 week4 深层神经网络 听课笔记

    1. 计算深度神经网络的时候,尽量向量化数据,不要用for循环.唯一用for循环的地方是依次在每一层做计算. 2. 最常用的检查代码是否有错的方法是检查算法中矩阵的维度. 正向传播: 对于单个样本,第 ...

  8. 学习笔记︱Nvidia DIGITS网页版深度学习框架——深度学习版SPSS

    DIGITS: Deep Learning GPU Training System1,是由英伟达(NVIDIA)公司开发的第一个交互式深度学习GPU训练系统.目的在于整合现有的Deep Learnin ...

  9. TensorFlow深度学习!构建神经网络预测股票价格!⛵

    作者:韩信子@ShowMeAI 深度学习实战系列:https://www.showmeai.tech/tutorials/42 TensorFlow 实战系列:https://www.showmeai ...

  10. 一天搞懂深度学习-训练深度神经网络(DNN)的要点

    前言 这是<一天搞懂深度学习>的第二部分 一.选择合适的损失函数 典型的损失函数有平方误差损失函数和交叉熵损失函数. 交叉熵损失函数: 选择不同的损失函数会有不同的训练效果 二.mini- ...

随机推荐

  1. 【三十一】thinkphp之安装、配置、模块化及URL模式

    一:安装与配置 1.获取ThinkPHP 下载地址:http://www.thinkphp.cn/down.html 2.入口文件 ThinkPHP采用单一入口模式对项目进行部署和访问,所以我们需要通 ...

  2. iOS 字符串 MD5

    iOS 字符串 MD5 Objective-C 实现 需要引入头文件 #import <CommonCrypto/CommonCrypto.h> 这里用方法实现 + (nullable N ...

  3. javascript初识

    1.什么是js 基于对象和事件驱动并且具有相对安全性的客户端脚本语言,由网景公司开发.     2.js数据类型   1.基本数据类型 undefined,null,number,boolean,st ...

  4. python模块安装

    现在终于知道怎么在windows上导入Python的第三方模块了 首先在DOS下进入Python安装的pip目录:D:/Python27/Scripts 用pip install XXX安装 之前一直 ...

  5. 2017 Multi-University Training Contest - Team 9 1003&&HDU 6163 CSGO【计算几何】

    CSGO Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  6. Vijos P1113 不高兴的津津【模拟】

    不高兴的津津 描述 津津上初中了.妈妈认为津津应该更加用功学习,所以津津除了上学之外,还要参加妈妈为她报名的各科复习班.另外每周妈妈还会送她去学习朗诵.舞蹈和钢琴.但是津津如果一天上课超过八个小时就会 ...

  7. android文件选择器、仿淘宝编辑页面、新手引导层等源码

    Android精选源码 单片机和安卓应用,传感器 文件选择器 android滑动选择的尺子view源码 android视频录制 视频压缩的源码 仿今日头条顶部导航指示器源码 Android框架+常用控 ...

  8. SLAM入门之视觉里程计(6):相机标定 张正友经典标定法详解

    想要从二维图像中获取到场景的三维信息,相机的内参数是必须的,在SLAM中,相机通常是提前标定好的.张正友于1998年在论文:"A Flexible New Technique fro Cam ...

  9. oracle创建触发器及作用举例

    --创建触发器及作用举例 create or replace trigger tri before delete on emp --在删除emp表数据之前需要做的事根据自己的业务去写,before是在 ...

  10. Sqoop介绍

    Sqoop介绍 http://sqoop.apache.org http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html   1.什么是Sqoop? ...