LruCache的缓存策略
一、Android中的缓存策略
一般来说,缓存策略主要包含缓存的添加、获取和删除这三类操作。如何添加和获取缓存这个比较好理解,那么为什么还要删除缓存呢?这是因为不管是内存缓存还是硬盘缓存,它们的缓存大小都是有限的。当缓存满了之后,再想其添加缓存,这个时候就需要删除一些旧的缓存并添加新的缓存。
因此LRU(Least Recently Used)缓存算法便应运而生,LRU是近期最少使用的算法,它的核心思想是当缓存满时,会优先淘汰那些近期最少使用的缓存对象。采用LRU算法的缓存有两种:LrhCache和DisLruCache分别用于实现内存缓存和硬盘缓存,其核心思想都是LRU缓存算法。
二、LruCache的使用
LruCache是Android 3.1所提供的一个缓存类,所以在Android中可以直接使用LruCache实现内存缓存。而DisLruCache目前在Android 还不是Android SDK的一部分,但Android官方文档推荐使用该算法来实现硬盘缓存。
1.LruCache的介绍
LruCache是个泛型类,主要算法原理是把最近使用的对象用强引用(即我们平常使用的对象引用方式)存储在 LinkedHashMap 中。当缓存满时,把最近最少使用的对象从内存中移除,并提供了get和put方法来完成缓存的获取和添加操作。
2.LruCache的使用
LruCache的使用非常简单,我们就已图片缓存为例。
int maxMemory = (int) (Runtime.getRuntime().totalMemory()/);
int cacheSize = maxMemory/;
mMemoryCache = new LruCache<String,Bitmap>(cacheSize){
@Override
protected int sizeOf(String key, Bitmap value) {
return value.getRowBytes()*value.getHeight()/
;
}
①设置LruCache缓存的大小,一般为当前进程可用容量的1/8。
②重写sizeOf方法,计算出要缓存的每张图片的大小。
注意:缓存的总容量和每个缓存对象的大小所用单位要一致。
三、LruCache的实现原理
LruCache的核心思想很好理解,就是要维护一个缓存对象列表,其中对象列表的排列方式是按照访问顺序实现的,即一直没访问的对象,将放在队尾,即将被淘汰。而最近访问的对象将放在队头,最后被淘汰。
如下图所示:
那么这个队列到底是由谁来维护的,前面已经介绍了是由LinkedHashMap来维护。而LinkedHashMap是由数组+双向链表的数据结构来实现的。其中双向链表的结构可以实现访问顺序和插入顺序,使得LinkedHashMap中的对按照一定顺序排列起来。
通过下面构造函数来指定LinkedHashMap中双向链表的结构是访问顺序还是插入顺序。
public LinkedHashMap(int initialCapacity,float loadFactor,boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}
其中accessOrder设置为true则为访问顺序,为false,则为插入顺序。
以具体例子解释: 当设置为true时
public static final void main(String[] args) {
LinkedHashMap<Integer, Integer> map = new LinkedHashMap<>(, 0.75f, true);
map.put(, );
map.put(, );
map.put(, );
map.put(, );
map.put(, );
map.put(, );
map.put(, );
map.get();
map.get();
for (Map.Entry<Integer, Integer> entry : map.entrySet())
{
System.out.println(entry.getKey() + ":" + entry.getValue());
}
}
输出结果:0:0 3:3 4:4 5:5 6:6 1:1 2:2
即最近访问的最后输出,那么这就正好满足的LRU缓存算法的思想。可见LruCache巧妙实现,就是利用了LinkedHashMap的这种数据结构。
下面我们在LruCache源码中具体看看,怎么应用LinkedHashMap来实现缓存的添加,获得和删除的。
public LruCache(int maxSize) {
if (maxSize <= ) {
throw new IllegalArgumentException("maxSize <= 0");
}
this.maxSize = maxSize;
this.map = new LinkedHashMap<K, V>(, 0.75f, true);
}
从LruCache的构造函数中可以看到正是用了LinkedHashMap的访问顺序。
put()方法:
public final V put(K key, V value) {
//不可为空,否则抛出异常
if (key == null || value == null) {
throw new NullPointerException("key == null || value== null");
}
V previous;
synchronized (this) {
//插入的缓存对象值加1
putCount++;
//增加已有缓存的大小
size += safeSizeOf(key, value);
//向map中加入缓存对象
previous = map.put(key, value);
//如果已有缓存对象,则缓存大小恢复到之前
if (previous != null) {
size -= safeSizeOf(key, previous);
}
}
//entryRemoved()是个空方法,可以自行实现
if (previous != null) {
entryRemoved(false, key, previous, value);
}
//调整缓存大小(关键方法)
trimToSize(maxSize);
return previous;
}
可以看到put()方法并没有什么难点,重要的就是在添加过缓存对象后,调用trimToSize()方法,来判断缓存是否已满,如果满了就要删除近期最少使用的算法。
trimToSize()方法:
public void trimToSize(int maxSize) {
//死循环
while (true) {
K key;
V value;
synchronized (this) {
//如果map为空并且缓存size不等于0或者缓存size小于0,抛出异常
if (size < || (map.isEmpty() && size != )) {
throw new IllegalStateException(getClass().getName()+ ".sizeOf() is reporting inconsistent results!");
}
//如果缓存大小size小于最大缓存,或者map为空,不需要再删除缓存对象,跳出循环
if (size <= maxSize || map.isEmpty()) {
break;
}
//迭代器获取第一个对象,即队尾的元素,近期最少访问的元素
Map.Entry<K, V> toEvict = map.entrySet().iterator().next();
key = toEvict.getKey();
value = toEvict.getValue();
//删除该对象,并更新缓存大小
map.remove(key);
size -= safeSizeOf(key, value);
evictionCount++;
}
entryRemoved(true, key, value, null);
}
}
trimToSize()方法不断地删除LinkedHashMap中队尾的元素,即近期最少访问的,直到缓存大小小于最大值。
当调用LruCache的get()方法获取集合中的缓存对象时,就代表访问了一次该元素,将会更新队列,保持整个队列是按照访问顺序排序。这个更新过程就是在LinkedHashMap中的get()方法中完成的。
先看LruCache的get()方法:
public final V get(K key) {
//key为空抛出异常
if (key == null) {
throw new NullPointerException("key == null");
}
V mapValue;
synchronized (this) {
//获取对应的缓存对象
//get()方法会实现将访问的元素更新到队列头部的功能
mapValue = map.get(key);
if (mapValue != null) {
hitCount++;
return mapValue;
}
missCount++;
}
其中LinkedHashMap的get()方法如下:
public V get(Object key) {
LinkedHashMapEntry<K,V> e = (LinkedHashMapEntry<K,V>)getEntry(key);
if (e == null)
return null;
//实现排序的关键方法
e.recordAccess(this);
return e.value;
}
调用recordAccess()方法如下:
void recordAccess(HashMap<K,V> m) {
LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
//判断是否是访问排序
if (lm.accessOrder) {
lm.modCount++;
//删除此元素
remove();
//将此元素移动到队列的头部
addBefore(lm.header);
}
}
由此可见LruCache中维护了一个集合LinkedHashMap,该LinkedHashMap是以访问顺序排序的。当调用put()方法时,就会在结合中添加元素,并调用trimToSize()判断缓存是否已满,如果满了就用LinkedHashMap的迭代器删除队尾元素,即近期最少访问的元素。当调用get()方法访问缓存对象时,就会调用LinkedHashMap的get()方法获得对应集合元素,同时会更新该元素到队头。
LruCache的缓存策略的更多相关文章
- 【安卓中的缓存策略系列】安卓缓存之内存缓存LruCache
缓存策略在移动端设备上是非常重要的,尤其是在图片加载这个场景下,因为图片相对而言比较大会花费用户较多的流量,因此可用缓存方式来解决,即当程序第一次从网络上获取图片的时候,就将其缓存到存储设备上,这样在 ...
- Android下的缓存策略
Android下的缓存策略 内存缓存 常用的内存缓存是软引用和弱引用,大部分的使用方式是Android提供的LRUCache缓存策略,本质是个LinkedHashMap(会根据使用次数进行排序) 磁盘 ...
- 安卓开发笔记——关于图片的三级缓存策略(内存LruCache+磁盘DiskLruCache+网络Volley)
在开发安卓应用中避免不了要使用到网络图片,获取网络图片很简单,但是需要付出一定的代价——流量.对于少数的图片而言问题不大,但如果手机应用中包含大量的图片,这势必会耗费用户的一定流量,如果我们不加以处理 ...
- Android Volley框架的使用(四)图片的三级缓存策略(内存LruCache+磁盘DiskLruCache+网络Volley)
在开发安卓应用中避免不了要使用到网络图片,获取网络图片很简单,但是需要付出一定的代价——流量.对于少数的图片而言问题不大,但如果手机应用中包含大量的图片,这势必会耗费用户的一定流量,如果我们不加以处理 ...
- 网络图片的获取以及二级缓存策略(Volley框架+内存LruCache+磁盘DiskLruCache)
在开发安卓应用中避免不了要使用到网络图片,获取网络图片很简单,但是需要付出一定的代价——流量.对于少数的图片而言问题不大,但如果手机应用中包含大量的图片,这势必会耗费用户的一定流量,如果我们不加以处理 ...
- Android 开源框架Universal-Image-Loader完全解析(二)--- 图片缓存策略详解
转载请注明本文出自xiaanming的博客(http://blog.csdn.net/xiaanming/article/details/26810303),请尊重他人的辛勤劳动成果,谢谢! 本篇文章 ...
- Android 开源框架Universal-Image-Loader全然解析(二)--- 图片缓存策略具体解释
转载请注明本文出自xiaanming的博客(http://blog.csdn.net/xiaanming/article/details/26810303),请尊重他人的辛勤劳动成果,谢谢! 本篇文章 ...
- 【安卓中的缓存策略系列】安卓缓存策略之综合应用ImageLoader实现照片墙的效果
在前面的[安卓缓存策略系列]安卓缓存之内存缓存LruCache和[安卓缓存策略系列]安卓缓存策略之磁盘缓存DiskLruCache这两篇博客中已经将安卓中的缓存策略的理论知识进行过详细讲解,还没看过这 ...
- 【安卓中的缓存策略系列】安卓缓存策略之磁盘缓存DiskLruCache
安卓中的缓存包括两种情况即内存缓存与磁盘缓存,其中内存缓存主要是使用LruCache这个类,其中内存缓存我在[安卓中的缓存策略系列]安卓缓存策略之内存缓存LruCache中已经进行过详细讲解,如看官还 ...
随机推荐
- Django—urls系统:urls基础
Django的urls系统简介 Django 1.11版本 URLConf官方文档 URL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL与要为该URL调用的视图函数之间的映 ...
- Python choice() 函数
Python choice() 函数 Python 数字 描述 choice() 方法返回一个列表,元组或字符串的随机项. 语法 以下是 choice() 方法的语法: import random ...
- Linux - IDA - 安装 ( 带F5功能 )
Linux - IDA - 安装 ( 带F5功能 ) 0x00 前言 最近在熟悉deepin系统,想着把逆向的一些软件也迁移过去,但像ida,Ollydbg这些工具一般都是在windows下使用,所以 ...
- LeetCode & Q38-Count and Say-Easy
String Description: The count-and-say sequence is the sequence of integers with the first five terms ...
- c#动态加载卸载DLL
前段时间工作的时候遇到一个问题.就是需要每次启动程序的时候动态替换掉某个dll,所以就百度了这方面的资料.这次记录下来让自己以后可以看. 根据自己的理解,动态卸载dll需要有以下条件: 1:dll在加 ...
- confluence搭建详情
Confluence安装&破解&汉化 编辑时间: 2017年7月7日18:01:13 1.介绍 Atlassian Confluence(简称Confluence)是一个专业的wiki ...
- js回顾(DOM中标签的CRUD,表格等)
01-DOM中的创建和添加标签 02-删除替换克隆标签 03-全选全不选反选 04-新闻字体 05-表格增删 06-动态生成表格 07-表格隔行变色 08-左到右右到左(将左边的标签移动到右边) 09 ...
- kubernetes进阶(05)kubernetes的命令
在Kubernetes中,Node.Pod.Replication Controller.Service等概念都可以看作一种资源对象,通过Kubernetes提供的Kubectl工具或者API调用进行 ...
- Docker学习笔记 - Docker容器内部署redis
Docker学习笔记(2-4)Docker应用实验-redist server 和client的安装使用 一.获取redis容器(含客户端和服务端) 二.创建服务端容器 1.在终端A中运行redis- ...
- JS解析JSON字符串
问题描述:后台需要传递给前台一些数据,用于页面数据显示,因为是一些Lable标签,所以数据传递到前台需要解析. 思路:因为数据比较杂乱,所以我选择传递的数据类型是Json格式,但是数据展示时需要解析成 ...