BZOJ_2693_jzptab_莫比乌斯反演
BZOJ_2693_jzptab_莫比乌斯反演
Description
Input
一个正整数T表示数据组数
接下来T行 每行两个正整数 表示N、M
Output
T行 每行一个整数 表示第i组数据的结果
Sample Input
4 5
Sample Output
122
HINT
T <= 10000
N, M<=10000000
$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)$
$=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\frac{i*j}{gcd(i,j)}$
$=\sum\limits_{p=1}^{n}\sum\limits_{i=1}^{\lfloor\frac{n}{p} \rfloor}
\sum\limits_{j=1}^{\lfloor\frac{m}{p} \rfloor} i*j*p*[gcd(i,j)=1]$
$=\sum\limits_{p=1}^{n}p\sum\limits_{i=1}^{\lfloor\frac{n}{p} \rfloor}
\sum\limits_{j=1}^{\lfloor\frac{m}{p} \rfloor} i*j
\sum\limits_{d|gcd(i,j)}\mu(d)$
$=\sum\limits_{p=1}^{n}p
\sum\limits_{d=1}^{n/p}\mu(d)*d^{2}
\sum\limits_{i=1}^{\lfloor\frac{n/p}{d} \rfloor}
\sum\limits_{j=1}^{\lfloor\frac{m/p}{d} \rfloor} i*j
$
设$s[n]=\sum\limits_{i=1}^{n}i$
$=\sum\limits_{p=1}^{n}p
\sum\limits_{d=1}^{n/p}\mu(d)*d^{2}*
s[\lfloor\frac{n/p}{d} \rfloor]*
s[\lfloor\frac{m/p}{d} \rfloor]
$
设$Q=d*p,先枚举Q$
$=\sum\limits_{Q=1}^{n}
s[\lfloor\frac{n}{Q} \rfloor]*
s[\lfloor\frac{m}{Q} \rfloor]
\sum\limits_{d|Q}\mu(d)*d^{2}*\lfloor\frac{Q}{d} \rfloor
$
设$f[n]=\sum\limits_{d|n}\mu(d)*d^{2}*\lfloor\frac{n}{d} \rfloor
=n\sum\limits_{d|n}\mu(d)*d$
$=\sum\limits_{Q=1}^{n}
s[\lfloor\frac{n}{Q} \rfloor]*
s[\lfloor\frac{m}{Q} \rfloor]*f[Q]
$
$然后发现f[n]=n*g[n],g[n]为 id卷\mu 的积性函数$
$我们可以处理出f[n]的前缀和,然后O(\sqrt{n})处理即可$
$mdlswl$
BZOJ_2693_jzptab_莫比乌斯反演的更多相关文章
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 莫比乌斯函数筛法 & 莫比乌斯反演
模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- POI2007_zap 莫比乌斯反演
题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- CSU 1325 莫比乌斯反演
题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...
随机推荐
- Xshell 链接 Could not connect to '192.168.80.129' (port 22): Connection failed
在使用Xshell链接虚拟机VM里面的Linux的时候.链接失败,报 Could not connect to ): Connection failed 解决步骤: 1.重启VM.Linux.Xshe ...
- List,Set,Map三种接口的区别
set --其中的值不允许重复,无序的数据结构 list --其中的值允许重复,因为其为有序的数据结构 map--成对的数据结构,健值必须具有唯一性(键不能同,否则值替换) List按对象进 ...
- 几个SQL命令的使用
几个SQL命令的使用 [原创 2006-4-21 14:22:05] 字号:大 中 小 1.Update批量更改 例如:A.B两个表,A,B有相同字段id,现将B中的b_passerd覆盖掉A ...
- Android优秀github项目整理
1.照相选相册,裁剪的 library TakePhotohttps://github.com/crazycodeboy/TakePhoto 2几行代码快速集成二维码扫描功能https://githu ...
- Java多线程:生命周期,实现与调度
Java线程生命周期 Java线程实现方法 继承Thread类,重写run()方法 实现Runnable接口,便于继承其他类 Callable类替换Runnable类,实现返回值 Future接口对任 ...
- 设计模式的征途—13.代理(Proxy)模式
所谓代购,简单说来就是找人帮忙购买所需要的商品.代购分为两种类型,一种是因为在当地买不到某件商品,又或者是因为当地这件商品的价格比其他地区的贵,因此托人在其他地区甚至国外购买该商品,然后通过快递发货或 ...
- 基于ASP.NET MVC 微信网页登录授权(scope为snsapi_base) 流程 上 获取OPENID
流程图 我们需要判断是否存在OPENID 首先我们得先定义一个全局的OPENID 类似于普通账号密码登录系统的 当前登录用户ID 因为我是MVC 框架 我这里定义一个控制器基类 BaseCont ...
- 基于Kafka Connect框架DataPipeline可以更好地解决哪些企业数据集成难题?
DataPipeline已经完成了很多优化和提升工作,可以很好地解决当前企业数据集成面临的很多核心难题. 1. 任务的独立性与全局性. 从Kafka设计之初,就遵从从源端到目的的解耦性.下游可以有很多 ...
- Eclipse中使用github
摘要: 实现:git->eclipse的,eclipse->git双向 1.安装egit插件 在Eclipse中选择help->Eclipse Marketplace,在search ...
- Java 8 Optional类深度解析(转)
经常会遇到这样的问题,调用一个方法得到了返回值却不能直接将返回值作为参数去调用别的方法.我们首先要判断这个返回值是否为null,只有在非空的前提下才能将其作为其他方法的参数. 新版本的Java,比如J ...