【BZOJ4816】数字表格(莫比乌斯反演)

题面

BZOJ

\[\prod_{i=1}^n\prod_{j=1}^mf[gcd(i,j)]
\]

题解

忽然不知道这个要怎么表示。。。

就写成这样吧。。

\[\prod_{d=1}^n\prod_{i=1}^n\prod_{j=1}^mif(gcd(i,j)==d)f[gcd(i,j)]
\]

直接把\(f[d]\)提出来

\[\prod_{d=1}^{n}f[d]^{\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}[gcd(i,j)==1]}
\]

上面那个东西用莫比乌斯反演+数论分块可以\(O(\sqrt n)\)求

外面套的这一层也可以数论分块求

于是,我们就得到了一个\(O(n)\)的做法

但是显然还不够

把上面那坨东西拎出来看

\[\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}[gcd(i,j)==1]
\]

太熟悉了

\[\sum_{i=1}^{n/d}\mu(i)[\frac{n}{id}][\frac{m}{id}]
\]

还是老套路,

令\(T=id\)

直接把\(T\)在整个式子里面提出来

\[\prod_{T=1}^{n}\prod_{d|T}f[d]^{[n/T][m/T]\mu(T/d)}
\]

有一些一样的东西

\[\prod_{T=1}^{n}(\prod_{d|T}f[d]^{\mu(T/d)})^{[n/T][m/T]}
\]

然后怎么办。。。。

很明显,已经可以对\([n/T][m/T]\)分块了

那。。。里面的东西怎么办。。。

又不能线性筛。。。

喂喂。。。不能线性筛就暴力算呀

数据范围\(10^6\)

每个数暴力算到他的倍数里面去

也就是\(\frac{n}{1}+\frac{n}{2}+.....\frac{n}{10^6}\)

这个东西也就是\(15n\)的样子

所以直接暴力把那个东西的前缀给求出来

就可以做到\(O(\sqrt n)\)求解了

补充几个问题

求\([\frac{n}{i}][\frac{m}{i}]\)次方的时候,可以直接膜一个\(1e9+6\)

这样会块很多。。。

然后就是斐波那契数列的逆元提前算出来

要不然在暴力求解的时候就会多个\(log\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MOD 1000000007
#define MAX 1000000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*a*s%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int f[MAX+10],pri[MAX],tot;
int g[MAX+10];
int inv[MAX+10];
int F[MAX+10];
int mu[MAX+10];
bool zs[MAX+10];
int n,m;
void pre()
{
f[1]=g[1]=F[0]=F[1]=1;
mu[1]=1;zs[1]=true;
for(int i=2;i<=MAX;++i)
{
f[i]=(f[i-1]+f[i-2])%MOD;
g[i]=fpow(f[i],MOD-2);F[i]=1;
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else{break;}
}
}
for(int i=1;i<=MAX;++i)
{
if(!mu[i])continue;
for(int j=i;j<=MAX;j+=i)
F[j]=1ll*F[j]*(mu[i]==1?f[j/i]:g[j/i])%MOD;
}
for(int i=2;i<=MAX;++i)F[i]=1ll*F[i]*F[i-1]%MOD;
}
int main()
{
pre();
int T=read();
while(T--)
{
n=read(),m=read();
if(n>m)swap(n,m);
int i=1,j,inv,ans=1;
while(i<=n)
{
j=min(n/(n/i),m/(m/i));
inv=1ll*F[j]*fpow(F[i-1],MOD-2)%MOD;
ans=1ll*ans*fpow(inv,1ll*(n/i)*(m/i)%(MOD-1))%MOD;
i=j+1;
}
printf("%d\n",(ans+MOD)%MOD);
}
return 0;
}

【BZOJ4816】数字表格(莫比乌斯反演)的更多相关文章

  1. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  2. 【BZOJ4816】【SDOI2017】数字表格 [莫比乌斯反演]

    数字表格 Time Limit: 50 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Doris刚刚学习了fibonac ...

  3. 【bzoj4816】[Sdoi2017]数字表格 莫比乌斯反演

    题目描述 Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生 ...

  4. BZOJ4816 SDOI2017 数字表格 莫比乌斯反演

    传送门 做莫比乌斯反演题显著提高了我的\(\LaTeX\)水平 推式子(默认\(N \leq M\),分数下取整,会省略大部分过程) \(\begin{align*} \prod\limits_{i= ...

  5. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  6. 【bzoj2154】Crash的数字表格 莫比乌斯反演

    题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...

  7. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  8. 【BZOJ】2154: Crash的数字表格 莫比乌斯反演

    [题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...

  9. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  10. BZOJ.4816.[SDOI2017]数字表格(莫比乌斯反演)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 这个好像简单些啊,只要不犯sb错误 [Update] 真的算反演中比较裸的题了... \(Descriptio ...

随机推荐

  1. 自动创建字符设备,不需mknod

    自动创建设备文件 1.自动创建设备文件的流程 字符设备驱动模块 -->创建一个设备驱动class--->创建属于class的device--->调用mdev工具(自动完成)--> ...

  2. [Python Study Notes]实现对键盘控制与监控

    ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...

  3. CocosCreator游戏开发---菜鸟学习之路(三)如何在CocosCreator中使用Pomelo

    PS(废话): 这段时间都在研究网易的Pomelo框架,作为新手小白,自然遇到了不少坑爹的事情.(当然也有可能是因为自己技术不过关的原因所以导致在很多基础的问题上纠结了很久.)网上也搜索了好久,但是基 ...

  4. Treap-平衡树学习笔记

    平衡树-Treap学习笔记 最近刚学了Treap 发现这种数据结构真的是--妙啊妙啊~~ 咳咳.... 所以发一发博客,也是为了加深蒟蒻自己的理解 顺便帮助一下各位小伙伴们 切入正题 Treap的结构 ...

  5. Freemarker的基本语法及入门基础

    freemarker的基本语法及入门基础一.freemarker模板文件(*.ftl)的基本组成部分        1. 文本:直接输出的内容部分        2. 注释:不会输出的内容,格式为&l ...

  6. 解决hadoop中 bin/hadoop fs -ls ls: `.': No such file or directory问题

    出现这样的问题确实很苦恼...使用的是2.7版本..一般论坛上的都是1.x的教程,搞死人 在现在的2.x版本上的使用bin/hadoop fs -ls  /就有用 应该使用绝对路径就不会有问题.... ...

  7. c的文件流读取

    strtok(数组,分隔符); atof(数组)返回值为转换后的数字; fgets(数组指针,长度,文件句柄); 整整花了两天啊

  8. PHP调用外部命令

    ------------------------------------------------------------------ 一.PHP调用外部命令总结                     ...

  9. 《android开发艺术探索》读书笔记(十四)--JNI和NDK编程

    接上篇<android开发艺术探索>读书笔记(十三)--综合技术 No1: Java JNI--Java Native Interface(java本地接口),它是为了方便java调用C. ...

  10. JS Cookie丢失问题

    JS Cookie丢失问题 前些天有人问我vue中使用proxy发送请求,为什么请求时cookie丢失,首先说一下我对cookie的理解: 1.cookie在正常情况下是会在每次请求时自动携带, 2. ...