No Problem

暴力

Str

存在循环节,大力找出来即可,长度显然不超过 \(10^3\) .

Not TSP

题面

TSP 问题,但是游览第 \(u\) 个点要满足下列条件之一

  1. \(1\dots u-1\) 均被游览过 .
  2. \(1\dots u-1\) 均未被游览过 .

题解

肯定是先往左跳然后往右填 .

dp 一下就好了 .

\(dp_{i,j}\) 表示 \(i\) 跳到 \(j\) .

代码

using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
template<typename T>
inline int chkmin(T& a, const T& b){if (a > b) a = b; return a;}
template<typename T>
inline int chkmax(T& a, const T& b){if (a < b) a = b; return a;}
const int N = 1555;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
ll n, d[N][N], dp[N][N], s[N], pre[N];
inline ll gg(int l, int r){return max(0ll, s[r-1] - s[l-1]);}
int main()
{
scanf("%lld", &n);
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++) scanf("%lld", d[i]+j);
for (int i=1; i<=n; i++) s[i] = s[i-1] + d[i-1][i];
for (int i=0; i<=n; i++){dp[0][i] = s[i]; d[0][i] = d[1][i];}
for (int i=2; i<=n; i++)
{
for (int j=0; j<i-1; j++) dp[j][i] = dp[j][j+1] + s[i] - s[j+1];
dp[i-1][i] = INF;
for (int j=0; j<i-1; j++) chkmin(dp[i-1][i], dp[j][i-1] + d[j][i]);
}
ll ans = INF;
for (int i=1; i<n; i++) chkmin(ans, dp[i][n]);
printf("%lld\n", ans);
return 0;
}

Game

题面

Alice 和 Bob 在做游戏 .

平面上有 \(n\) 个点,Alice 先手,每次每个人需要画一条平行于 \(x\) 或 \(y\) 轴的一条直线,穿过前一条直线穿过的某个点 . 不能画与之前直线重合的直线 . 不能操作的人输 .

问谁必胜 .

题解

如果有一个点 \(x,y\),就连一条边 \(x\to y\),这相当于是两条直线在转移 .

于是问题就等价于 Alice 和 Bob 在这张图上走,走过的点不能再走 .

然而我们把 \(x,y\) 取出来,会发现这玩意其实是一个二分图 .

这个有一个结论:后手必胜当且仅当图有完备匹配 .

证明:

如果有匹配:Alice 每动一步 Bob 就跑去它的匹配点,这样最后 Alice 就无路可走了 .

若不然:Alice 选一个不在匹配中的点,Bob 会选一个在匹配中的点,这样 Alice 就可以用上面的策略取胜了 .

代码

using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
template<typename T>
inline int chkmin(T& a, const T& b){if (a > b) a = b; return a;}
template<typename T>
inline int chkmax(T& a, const T& b){if (a < b) a = b; return a;}
const int N = 1555;
template<typename T>
struct pool
{
unordered_map<T, unsigned> pol;
unsigned cc = 0;
unsigned get(T x)
{
auto ptr = pol.find(x);
if (ptr == pol.end()){pol[x] = ++cc; return cc;}
else return ptr -> second;
}
};
pool<int> T;
int n, vis[N], L[N], R[N];
vector<int> g[N];
set<int> vx, vy;
inline void addedge(int u, int v){g[u].emplace_back(v);}
bool dfs(int u, int t)
{
if (vis[u] == t) return false;
vis[u] = t;
for (int v : g[u])
if (!L[v] || dfs(L[v], t)){L[v] = u; R[u] = v; return true;}
return false;
}
inline void match(){for (int i=1; i<=n; i++) dfs(i, i);}
int main()
{
scanf("%d", &n);
for (int i=1, x, y; i<=n; i++)
{
scanf("%d%d", &x, &y);
x = T.get(x); y = T.get(y);
vx.insert(x); vy.insert(y);
addedge(x, y);
}
if (vx.size() != vy.size()){puts("Alice"); return 0;}
match();
for (int i : vx) if (!R[i]){puts("Alice"); return 0;}
for (int i : vy) if (!L[i]){puts("Alice"); return 0;}
puts("Bob");
return 0;
}

丽泽普及2022交流赛day19 半社论的更多相关文章

  1. 丽泽普及2022交流赛day22 无社论

    开始掉分模式 . T3 有人上费用流了???(id) 不用 TOC 了 . T1 暴力 T2 没看见 任意两圆不相交,gg 包含关系容易维护,特判相切 . 单调栈即可 T3 贪心 T4 神秘题

  2. 丽泽普及2022交流赛day20 1/4社论

    目录 T1 正方形 T2 玩蛇 T3 嗷呜 T4 开车 T1 正方形 略 T2 玩蛇 略 T3 嗷呜 (插一个删一个?) 找出相同的,丢掉循环节 . 感觉非常离谱,,, 正确性存疑 正确性问 SoyT ...

  3. 丽泽普及2022交流赛day15 社论

    前言 link 太牛逼了,补完我一定放代码 . orz 越看越牛逼 orz . 时间复杂度都是口胡,不要信 . 以下是目录 目录 目录 前言 A 题面 题解 代码 B 题面 题解 代码 C 题面 题解 ...

  4. 丽泽普及2022交流赛day21 社论

    A 暴力 . greater<double> -> greater<int> \(100\) -> \(50\) 代码丢了 . B dp . 考场上代码抢救一下就过 ...

  5. 丽泽普及2022交流赛day18 社论

    A 暴力扫一遍 B 算法 0 似乎是二分 算法 1 随便贪心 C 算法 1 枚举一个点作为最大值 / 最小值,用单调栈维护其作为答案的左右端点即可轻易计算 . 时间复杂度 \(O(n)\) . 算法 ...

  6. 丽泽普及2022交流赛day17 社论

    http://zhengruioi.com/contest/1088 SoyTony 重新 rk1 . stO SoyTony Orz 省流:俩计数 . 目录 目录 A 题面 题解 Key 算法 1( ...

  7. 丽泽普及2022交流赛day16 社论

    这场比较平凡吧 . 省流: http://zhengruioi.com/contest/1087 目录 目录 A. Gene 题面 题解 算法一(正解) 算法二 B. Fight 题面 题解 算法一( ...

  8. 丽泽普及2022交流赛day14

    目录 A 题面 题解 B 题面 题解 C 题面 题解 D 题面 题解 A 题面 一个 \(1\dots n\) 的排列 \(p\) 和一个 \(1\dots n-1\) 的排列 \(q\) 满足 对排 ...

  9. 青岛理工ACM交流赛 J题 数格子算面积

    数格子算面积 Time Limit: 1000MS Memory limit: 262144K 题目描述 给你一个多边形(用’\’和’/’表示多边形的边),求多边形的面积. 输入  第一行两个正整数h ...

随机推荐

  1. drools的简单入门案例

    一.背景 最近在学习规则引擎drools,此处简单记录一下drools的入门案例. 二.为什么要学习drools 假设我们存在如下场景: 在我们到商店购买衣服的时候,经常会发生这样的事情,购买1件不打 ...

  2. 使用MinIO搭建对象存储服务

    1.MinIO是什么? MinIO 是一款高性能.分布式的对象存储系统. 它是一款软件产品, 可以100%的运行在标准硬件.即X86等低成本机器也能够很好的运行MinIO. MinIO与传统的存储和其 ...

  3. Vue 中 watch 的一个坑

    开发所用 Vue 版本 2.6.11 子组件 coma 中两个属性: props: { url: { type: String, default: '' }, oriurl:{ type: Strin ...

  4. 一次XGBoost性能优化-超线程影响运算速度

    一.问题背景 一个朋友在使用 XGBoost 框架进行机器学习编码,他们的一个demo, 在笔记本的虚拟机(4核)运行的时候,只要8s, 但是在一个64核128G 的物理机上面的虚拟机去跑的时候,发现 ...

  5. Python Django 功能模块

    Python Django模块 Django模块,是针对有django基础,对django功能进行模块化,方便下次使用. 一.注册模块 该注册采用邮箱验证,注册成功后会发送激活链接到邮箱. 邮箱验证参 ...

  6. Go微服务框架go-kratos实战03:使用 gorm 实现增删改查操作

    一.简介 在上一篇文章 go-kratos实战02 中,详细介绍了用 kratos 编写项目代码的步骤.这篇就在上篇基础上,再结合 Go 数据库操作库 gorm 一步一步来实现一个简单的增删改查操作. ...

  7. Docker运行资源控制

    概述 ​ 一个 docker host 上会运行若干容器,每个容器都需要 CPU.内存和 IO 资源.对于 KVM,VMware 等虚拟化技术,用户可以控制分配多少 CPU.内存资源给每个虚拟机.对于 ...

  8. SQL Server 2019企业版和标准版的区别?

    来源公众号:SQL数据库运维 原文链接:https://mp.weixin.qq.com/s?__biz=MzI1NTQyNzg3MQ==&mid=2247485400&idx=1&a ...

  9. BitBlt()函数实现带数字百分比进度条控件、静态文本(STATIC)控件实现的位图进度条、自定义进度条控件实现七彩虹颜色带数字百分比

    Windows API BitBlt()函数实现带数字百分比进度条控件. 有两个例子:一用定时器实现,二用多线程实现. 带有详细注解. 此例是本人原创,绝对是网上稀缺资源(本源码用Windows AP ...

  10. .NET C#基础(1):相等性与同一性判定 - 似乎有点小缺陷的设计

    0. 文章目的   本文面向有一定.NET C#基础知识的学习者,介绍在C#中的常用的对象比较手段,并提供一些编码上的建议. 1. 阅读基础 1:理解C#基本语法与基本概念(如类.方法.字段与变量声明 ...