ShardingSphere数据分片
码农在囧途
坚持是一件比较难的事,坚持并不是自欺欺人的一种自我麻痹和安慰,也不是做给被人的,我觉得,坚持的本质并没有带着过多的功利主义,如果满是功利主义,那么这个坚持并不会长久,也不会有好的收获,坚持应该带着热爱,带着思想,把它当成习惯,但是并不是内卷,而是一种发自内心的喜欢和平实!希望我们都有自己的坚持,坚持写一篇文章,坚持爱一个人,坚持读一本书,坚持走向远方!

前言
上一篇我们说了ShardingSphere的读写分离,使用读写分离能够减轻单库的读写操作,从而提升数据库的吞吐量,但是当数据库中表的数据量到达一定数量时,我们可能就会需要进行分片了,
分片又分为垂直分片和水平分片,下面我们对二者进行简单的分析。
垂直分片
我们的一个数据库中通常是有很多数据表的,不过可能由于我们的分类不到位,就会出现涝的涝死旱的旱死的局面,比如某些数据表的读写操作十分频繁,而我的这个库中大量的集中了这种
读写操作频繁的表,那么整体的吞吐量就会降低,而某个库中又集中了读写不频繁的表,吞吐量十分的高(但是好像没什么卵用),所以我们应该合理的分配,以保证整理的吞吐量达到最大值,
下图将数据表各分到了一个数据库中。
不过垂直分片不能从根本上解决读写瓶颈,因为不管你再怎么分,所有的数据始终都集中在一张表里面,就算数据库的性能再好,也解决不了这个问题。所以我们需要进行
更加细粒度的划分,下面我们来讲解水平分片。
水平分片
水平分片又可以叫做横向拆分,就是将一张大表拆分为若干张小表,比如我一张表中有1亿条数据,那么我拆分为10张表,每张表中存1000万条数据,那么效率就会变高,
还有些数据需要进行分类和归档,那么我们也需要进行分表,之前我们系统中一个表用来存储文档信息,有十多年因为数据量十分庞大,在业务中需要对文档进行排序等操作,本来查询就比较
耗时了,再加上需要进行逻辑上的处理,所以就更加耗时,于是就进行了分表,将每一年的数据存进一个表,这样就提高了查询效率,并且更加容易对数据进行追踪和管理,如下就是水平
分片的图例。
ShardingSphere数据分片实战
使用ShardingSphere数据分片,我们只需通过简单的配置就能实现,ShardingSphere帮我们屏蔽了底层逻辑,我们也可通过ShardingSphere预留的
接口和SPI进行扩展我们的需求,比如可以实现我们自己的分片算法,主键生成策略等等。
下面演示将文档按照年份进行分表,将文档数据分表至2013年至2022年来存,一般我们的配置文件都是配置在nacos上面,所以能够灵活的进行配置,
当到了2023年,我们可以添加一个2023年的表,改下nacos的配置,当然,一般会先预留出数据表,nacos上面也留出空间,我们的是预留到2032年,
留出了10年。
yml文件
我们重点关注下面的一些配置,actual-data-nodes代表进行分片的表,使用表达式,document.document_$->{2013..2022}代表document数据库
下面的document_前缀的表进行分片,如document_2022,document_2021,{2013..2022}代表2013到2022这个区间,sharding-column是分片列,
是我们数据表中的某个字段,就是根据它来进行分片,sharding-algorithms是分片算法,我们可以通过SPI来实现自己的分片算法,接口是StandardShardingAlgorithm,
如下我们使用的是INLINE基于行表达式的分片算法,algorithm-expression是分片表达式,ShardingSphere底层会进行解析表达式,然后分片到对应的数据表上面,
我们的表达式是document_$->{year},也就是根据年进行分片,当然,我们可以根据自己的需求去写表达式,比如根据主键取模进行分片等,需要根据我们的实际场景去做,
key-generate-strategy是主键生成策略,ShardingSphere支持自定义主键生成策略,我们只需要通过SPI就可以实现,接口是KeyGenerateAlgorithm,已经
实现了UUID和snowflake雪花算法等主键生成策略。
spring:
shardingsphere:
mode:
type: Standalone
repository:
type: File
overwrite: true
datasource:
names: document
document:
jdbc-url: jdbc:mysql://localhost:3306/document?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.jdbc.Driver
username: root
password: qwer123@
rules:
sharding:
tables:
document:
actual-data-nodes: document.document_$->{2013..2022}
table-strategy:
standard:
sharding-column: year #分片列
sharding-algorithm-name: document-inline # 分片算法名称
key-generate-strategy:
column: id # 主键列
key-generator-name: timestamp #主键生成算法
sharding-algorithms: #分片算法
document-inline:
type: INLINE
props:
algorithm-expression: document_$->{year}
key-generators:
timestamp:
type: SNOWFLAKE
测试数据数据分片
虚幻插入十次,每次都插入2013年到2022年的数据。
void addDocSliceYear(){
for (int i = 0; i < 10; i++) {
for (int year = 2013; year <= 2022; year++) {
Document document = new Document()
.setDocumentName("document year【" + year + "】")
.setDocumentDetail("year【" + year + "】")
.setYear(year);
documentService.save(document);
}
}
}
我们可以看出,数据分片成功,我们看一下分片的数据怎么查询的(此处只是单表查询),我们看一下ShardingSphere-SQL输出的sql语句
SELECT id,document_name,document_detail,year FROM document_2013
UNION ALL SELECT id,document_name,document_detail,year FROM document_2014
UNION ALL SELECT id,document_name,document_detail,year FROM document_2015
UNION ALL SELECT id,document_name,document_detail,year FROM document_2016
UNION ALL SELECT id,document_name,document_detail,year FROM document_2017
UNION ALL SELECT id,document_name,document_detail,year FROM document_2018
UNION ALL SELECT id,document_name,document_detail,year FROM document_2019
UNION ALL SELECT id,document_name,document_detail,year FROM document_2020
UNION ALL SELECT id,document_name,document_detail,year FROM document_2021
UNION ALL SELECT id,document_name,document_detail,year FROM document_2022
从控制台打印的SQL语句中看出,ShardingSphere分片查询使用的是UNION ALL,UNION ALL实现把前后两个SELECT集合的数据联合起来,组成一个结果集查询输出,
联合查询需要每个表中的的字段相同,字段类型相同,数量相同,这也是分片的基本要求。
上面我们只演示了单表的数据分片查询,如果是多表查询,我们需要配置binding-tables绑定表,这样能够减少查询的笛卡尔积,从而提升查询效率,我们就不做
详细的介绍,可去官网自己查看。
分片算法
ShardingSphere的分片算法有多种,我们也可以自己实现一套分片算法,通过SPI,分片算法的顶层接口是ShardingAlgorithm,目前实现了多种算法。
BoundaryBasedRangeShardingAlgorithm: 基于分片边界的范围分片算法
VolumeBasedRangeShardingAlgorithm: 基于分片容量的范围分片算法
ComplexInlineShardingAlgorithm: 基于行表达式的复合分片算法
AutoIntervalShardingAlgorithm: 基于可变时间范围的分片算法
ClassBasedShardingAlgorithm: 基于自定义类的分片算法
HintInlineShardingAlgorithm: 基于行表达式的 Hint 分片算法
IntervalShardingAlgorithm: 基于固定时间范围的分片算法
HashModShardingAlgorithm: 基于哈希取模的分片算法
InlineShardingAlgorithm: 基于行表达式的分片算法
ModShardingAlgorithm: 基于取模的分片算法
CosIdModShardingAlgorithm: 基于 CosId 的取模分片算法
CosIdIntervalShardingAlgorithm: 基于 CosId 的固定时间范围的分片算法
CosIdSnowflakeIntervalShardingAlgorithm: 基于 CosId 的雪花ID固定时间范围的分片算法
分布式主键生成算法
ShardingSphere也可以自定义实现主键生成策略,通过SPI,顶层接口为KeyGenerateAlgorithm,目前实现的算法有。
SnowflakeKeyGenerateAlgorithm 基于雪花算法的分布式主键生成算法
UUIDKeyGenerateAlgorithm: 基于 UUID 的分布式主键生成算法
CosIdKeyGenerateAlgorithm: 基于 CosId 的分布式主键生成算法
CosIdSnowflakeKeyGenerateAlgorithm: 基于 CosId 的雪花算法分布式主键生成算法
NanoIdKeyGenerateAlgorithm: 基于 NanoId 的分布式主键生成算法
总结
ShardingSphere能够方便的实现数据分片,但是数据分片本身就是一件迫不得已的事情,它会是我们的业务变得更加的复杂,在设计的时候需要经过严格的考量后再进行数据分片,防止出现一些不必要的麻烦。
关于ShardingSphere的数据分片,我们就说到这里,感谢你的观看,我们下期再见。
ShardingSphere数据分片的更多相关文章
- 【ShardingSphere】ShardingSphere学习(三)-数据分片-分片
分片键 分片算法 分片策略 SQL Hint 分片键 用于分片的数据库字段,是将数据库(表)水平拆分的关键字段.例:将订单表中的订单主键的尾数取模分片,则订单主键为分片字段. SQL中如果无分片字段, ...
- sharding-jdbc数据分片配置
数据分片 不使用Spring 引入Maven依赖 <dependency> <groupId>org.apache.shardingsphere</groupId> ...
- MyCat 学习笔记 第十二篇.数据分片 之 分片事务处理
1 环境说明 VM 模拟3台MYSQL 5.6 服务器 VM1 192.168.31.187:3307 VM2 192.168.31.212:3307 VM3 192.168.31.150: 330 ...
- MyCat 学习笔记 第十篇.数据分片 之 ER分片
1 应用场景 这篇来说下mycat中自带的er关系分片,所谓er关系分片即可以理解为有关联关系表之间数据分片.类似于订单主表与订单详情表间的分片存储规则. 本文所说的er分片分为两种: a. 依据主键 ...
- MyCat 学习笔记 第九篇.数据分片 之 数值分布
1 应用场景 Mycat 自带了多套数据分片的机制,其实根据数值分片也是比较简单,其实这个和数据取摸是类似的实现. 优.缺点同上一篇 2 环境说明 参考 <MyCat 学习笔记>第六篇. ...
- MyCat 学习笔记 第八篇.数据分片 之 求摸运算分片
1 应用场景 Mycat 自带了多套数据分片的机制,其实根据数值取摸应该是最简单的一种. 优点:数据离散概率较为平均,可以有效的提高应用的数据吞吐. 缺点:比较明显,后期数据运维与迁移比较困难.好在M ...
- MyCat 学习笔记 第七篇.数据分片 之 按数据范围分片
1 应用场景 Mycat 其实自带了2个数据范围分片的方案,一个是纯数据范围的分片,比如 1至 10000 号的数据放到分片1 ,10001 至 20000号数据放到分片2里. 另一个是数据常量形式的 ...
- MyCat 学习笔记 第六篇.数据分片 之 按月数据分片
1 应用场景 Mycat 有很多数据分库规则,接下来几篇就相关觉得常用的规则进行试用与总结. 一般来说,按自然月份来进行数据分片的规则比较适用于商城订单查询,类似最近1周.2周.3个月内的数据.或是报 ...
- ip协议的数据分片备忘
总结: 不仅tcp协议能对数据段进行分割,ip协议也具备这个功能,之所以会这样是两者都受到底层MTU的限制(虽说tcp是根据MSS限制来分割数据包,由于MTU=tcp包头+ip包头+MSS,所以其实也 ...
随机推荐
- 关于transform属性的一些理解
3D transform transform进行动画演示时,是以元素的中心为基准点的,可以使用transform-origin改变元素转变的基准点. 所有的transform动作改变都会引起X.Y轴的 ...
- PHP反序列化链分析
前言 基本的魔术方法和反序列化漏洞原理这里就不展开了. 给出一些魔术方法的触发条件: __construct()当一个对象创建(new)时被调用,但在unserialize()时是不会自动调用的 __ ...
- kNN-预测
现在进行第五步,对数据进行预测 那么要做的的是从数据集里面拿出一部分作为要预测的,剩下的去比较,书上使用的是10% # 对之前做好的kNN算法进行预测 # 首先获取之前构造好的kNN分类器.数据.规则 ...
- 使用VPLS跨地域多站点建立二层交换网络
VLL解决方案 https://www.cnblogs.com/darkchen/p/14652540.html 接上篇文档引出VPLS VLL可以跨地域建立二层交换网络,但有个缺陷是只支持两个sit ...
- 我怀疑这是IDEA的BUG,但是我翻遍全网没找到证据!
你好呀,我是歪歪. 前几天有朋友给我发来这样的一个截图: 他说他不理解,为什么这样不报错. 我说我也不理解,把一个 boolean 类型赋值给 int 类型,怎么会不报错呢,并接着追问他:这个代码截图 ...
- Python <算法思想集结>之初窥基础算法
1. 前言 数据结构和算法是程序的 2 大基础结构,如果说数据是程序的汽油,算法则就是程序的发动机. 什么是数据结构? 指数据在计算机中的存储方式,数据的存储方式会影响到获取数据的便利性. 现实生活中 ...
- 如何让 Windows 把 TypeScript 文件当作文本文件
TL;DR 修改注册表项 HKEY_CLASSES_ROOT\.ts 为 HKEY_CLASSES_ROOT\.txt 的值 起因 Windows10 总把 TypeScript 文件自动当成视频,放 ...
- 在windows下使用s3cmd和s3browser来管理amazon s3的笔记
S3是Amazon S3的简称,s3cmd是一款命令行工具用来管理s3,同时还有一款图形化的管理工具:s3 browser. 因为绝大多数用户都是在linux下管理s3,而我们的打包机是在window ...
- 绿色城市智慧运营:Web 3D 垃圾分类 GIS 系统
前言 感谢所有为上海疫情奉献的人,祈求上海疫情早日清零,中国加油,上海加油! <上海市生活垃圾管理条例>施行至今已有两年多,上海市民践行绿色低碳理念.主动参与生活垃圾分类的习惯基本养成,分 ...
- 浅谈Javascript单线程和事件循环
单线程 Javascript 是单线程的,意味着不会有其他线程来竞争.为什么是单线程呢? 假设 Javascript 是多线程的,有两个线程,分别对同一个元素进行操作: function change ...