C#关于在返回值为Task方法中使用Thread.Sleep引发的思考
起因
最近有个小伙伴提出了一个问题,就是在使用.net core的BackgroundService的时候,对应的ExecuteAsync方法里面写如下代码,会使程序一直卡在当前方法,不会继续执行,代码如下:
public class BGService : BackgroundService
{
    protected override Task ExecuteAsync(CancellationToken stoppingToken)
    {
        while (true)
        {
            Thread.Sleep(1000);
        }
    }
}
其实这个问题我们还是对Task和异步执行过程理解不够深入导致的,所以本篇文章笔者就以这个问题来对Task和异步方法执行过程来做源码的探究。
PS:本文只贴出重要的代码和注释,不是其全部的代码,读者多关注下注释。
解析
Thread.Sleep和Thread.Delay的区别
- Thread.Sleep分析
它会挂起当前执行线程指定时间(调用了系统内核的方法),而这时候当前线程是不能做任何其他的事情,只能等待指定时间后再执行。最终执行的代码如下图: 
private static void SleepInternal(int millisecondsTimeout)
{
    //这是Windows平台,不同平台调用的方法不一样
    Interop.Kernel32.Sleep((uint)millisecondsTimeout);
}
- Thread.Delay分析
它的执行实际上是交给了TimerQueueTimer,也就是定时器队列(每个进程里,所有的timer执行都在一个TimerQueueTimer队列集合里面),在指定时间后回调方法,由ThreadPool中的线程执行。实际执行代码如下图: 
public static Task Delay(int millisecondsDelay, CancellationToken cancellationToken)
{
    if (millisecondsDelay < -1)
    {
        ThrowHelper.ThrowArgumentOutOfRangeException(ExceptionArgument.millisecondsDelay, ExceptionResource.Task_Delay_InvalidMillisecondsDelay);
    }
    //开始执行Delay方法
    return Delay((uint)millisecondsDelay, cancellationToken);
}
private static Task Delay(uint millisecondsDelay, CancellationToken cancellationToken) =>
    cancellationToken.IsCancellationRequested ? FromCanceled(cancellationToken) :
    millisecondsDelay == 0 ? CompletedTask :
                                          //它继承自DelayPromise,只不过加了CancellationTiken
    cancellationToken.CanBeCanceled ? new DelayPromiseWithCancellation(millisecondsDelay, cancellationToken) :
    //最终执行这个
    new DelayPromise(millisecondsDelay);
internal DelayPromise(uint millisecondsDelay)
{
    if (millisecondsDelay != Timeout.UnsignedInfinite)
    {
        //把任务放到定时队列里
        _timer = new TimerQueueTimer(s_timerCallback, this, millisecondsDelay, Timeout.UnsignedInfinite, flowExecutionContext: false);
        //如果已经完成了,就把这个销毁掉
        if (IsCompleted)
        {
            _timer.Close();
        }
    }
}
总结来说:
1.Thread.Sleep会让当前执行线程挂起一段时间,而在挂起的过程中,不能去干其他的事情,影响线程池对线程的调度,间接影响系统的并发性。
2.Task.Delay由创建定时队列消息,在指定时间之后由线程池去处理Callback,而在这指定时间内是由系统去调度的(这里可能我理解不对),而当前执行线程可以继续干其他事情。
多线程和异步
Task任务默认情况下是通过线程池中的空闲线程去执行,除非设置LongRunning才会单独开启一个Thread去执行。一般来说多线程只是异步编程实现的一种方式,
- 多线程
并行的处理一些任务,尤其是多核CPU,充分利用CPU的性能,增加任务的处理效率,如Paraller并行库等。 - 异步
IO密集型操作:如Web应用在进行数据库操作,文件操作或者调用外部接口,发生磁盘IO或者网络IO时,如果非异步操作,会使当前执行线程一直保持等待事件的完成,而不做其他的处理,导致资源被浪费。如果是异步操作,当前执行线程在出发IO操作后,线程不需要等待事件的完成再去操作,而可以由线程池调度执行其他的请求,那么当事件完成后,由操作系统硬件去通知,然后再有线程池去调度线程去执行。所以我们可以发现在执行异步方法时,await前和await后不一定是相同一个线程去执行,可能会切换线程(可以对比前后的线程Id)。
CPU密集型操作:如进行大量的计算任务,需要CPU一直调度,我们在WinForm或者WPF中可能会有很深的体会。假如我们执行一个很复杂的计算任务,如果是同步的话,用户得一直等待计算完成,UI才会展示,如果是异步的话,用户不用等待计算完成,UI直接就正常显示和操作,而这部分计算由线程池提供的线程独立其执行,而不影响当前执行线程的操作。 
Async和Await
一般来说我们使用Await和Async是一起使用的,但是它存在其传播性,它本身实际上是个语法糖,算是隐性的调用ContinueWith方法,在执行完成后继续执行其他任务,接下我们来解析下他是怎么执行的。我们看下如下代码:
public async Task AA() {
    await Task.Delay(1000);
    Console.WriteLine("执行到我了");
}
实际上上面的代码在编译之后,会形成一个状态机(只有标识是async的才会被编译成状态机的形式),具体代码如下(含注释),
public class C
{
    [StructLayout(LayoutKind.Auto)]
    [CompilerGenerated]
    private struct <AA>d__0 : IAsyncStateMachine  //所有的异步方法都继承自它
    {
        //初始值是-1
        public int <>1__state;
        //异步任务方法构造器
        public AsyncTaskMethodBuilder <>t__builder;
        private TaskAwaiter <>u__1;
        private void MoveNext()
        {
            int num = <>1__state;
            try
            {
                TaskAwaiter awaiter;
                if (num != 0)
                {
                    //在有标识await的地方,会调用对应Task的GetAwaiter()方法,但是它还是会以当前执行线程去调用Task.Delay。
                    awaiter = Task.Delay(1000).GetAwaiter();
                    //当await是未完成状态
                    if (!awaiter.IsCompleted)
                    {
                        num = (<>1__state = 0);
                        <>u__1 = awaiter;
                        //重点是这个方法,里面实际上是执行了ContinueWith,而在Task执行完成之后,又调用其MoveNext方法(这时候可能是不同的线程去执行的)。
                        <>t__builder.AwaitUnsafeOnCompleted(ref awaiter, ref this);
                        return;
                    }
                }
                else
                {
                    awaiter = <>u__1;
                    <>u__1 = default(TaskAwaiter);
                    num = (<>1__state = -1);
                }
                awaiter.GetResult();
                //在获取到值之后,继续执行await后面的代码
                Console.WriteLine("执行到我了");
            }
            catch (Exception exception)
            {
                <>1__state = -2;
                <>t__builder.SetException(exception);
                return;
            }
            <>1__state = -2;
            <>t__builder.SetResult();
        }
        void IAsyncStateMachine.MoveNext()
        {
            this.MoveNext();
        }
    }
    //AA整个异步方法被编译成这样
    [AsyncStateMachine(typeof(<AA>d__0))]
    public Task AA()
    {
        //构建状态机
        <AA>d__0 stateMachine = default(<AA>d__0);
        //创建异步任务方法构造器
        stateMachine.<>t__builder = AsyncTaskMethodBuilder.Create();
        stateMachine.<>1__state = -1;
        //执行Start方法
        stateMachine.<>t__builder.Start(ref stateMachine);
        //返回当前Task
        return stateMachine.<>t__builder.Task;
    }
}
我们来看AA异步方法,被编译成一个完全不同的方法,在d__0中有一个MoveNext方法,来执行Task和原来await后面的代码。
AA方法中stateMachine.<>t__builder.Start(ref stateMachine);我们看一下到底执行了什么,如下:
public struct AsyncTaskMethodBuilder<TResult>
{
    [DebuggerStepThrough]
    [MethodImpl(MethodImplOptions.AggressiveInlining)]
    public void Start<TStateMachine>(ref TStateMachine stateMachine) where TStateMachine : IAsyncStateMachine =>
        AsyncMethodBuilderCore.Start(ref stateMachine);
}
internal static class AsyncMethodBuilderCore
{
    [DebuggerStepThrough]
    public static void Start<TStateMachine>(ref TStateMachine stateMachine) where TStateMachine : IAsyncStateMachine
    {
        if (stateMachine == null) // TStateMachines are generally non-nullable value types, so this check will be elided
        {
            ThrowHelper.ThrowArgumentNullException(ExceptionArgument.stateMachine);
        }
        Thread currentThread = Thread.CurrentThread;
        //当前线程的执行上下文
        ExecutionContext? previousExecutionCtx = currentThread._executionContext;
        //当前线程的同步上下文
        SynchronizationContext? previousSyncCtx = currentThread._synchronizationContext;
        try
        {
            //这里当前执行线程开始执行状态机的MoveNext方法
            stateMachine.MoveNext();
        }
        finally
        {
            //此处省略,主要是防止上下文改变,设置上下文。
        }
    }
}
在MoveNext方法里面,我们继续看,如果当前Task的状态是未完成的话,那么会执行一个叫做AwaitUnsafeOnCompleted的方法,我们看如下代码:
public struct AsyncTaskMethodBuilder<TResult>
{
    [MethodImpl(MethodImplOptions.AggressiveOptimization)]
    internal static void AwaitUnsafeOnCompleted<TAwaiter>(
        ref TAwaiter awaiter, IAsyncStateMachineBox box)
        where TAwaiter : ICriticalNotifyCompletion
    {
        //一般来说当前await是TaskAwaiter继承自ITaskAwaiter,所以会计入这个判断
        if ((null != (object?)default(TAwaiter)) && (awaiter is ITaskAwaiter))
        {
            ref TaskAwaiter ta = ref Unsafe.As<TAwaiter, TaskAwaiter>(ref awaiter);
            //这个box,里面包含MoveNext方法。
            TaskAwaiter.UnsafeOnCompletedInternal(ta.m_task, box, continueOnCapturedContext: true);
        }
        //省略部分代码。。。
    }
}
public readonly struct TaskAwaiter : ICriticalNotifyCompletion, ITaskAwaiter
{
    internal static void UnsafeOnCompletedInternal(Task task, IAsyncStateMachineBox stateMachineBox, bool continueOnCapturedContext)
    {
        Debug.Assert(stateMachineBox != null);
        //这里省略了if判断
        else
        {
            //执行当前TaskContinuationForAwait,也就类似ContinuWith,当前的task的ContinuWith就是执行MoveNext方法
            task.UnsafeSetContinuationForAwait(stateMachineBox, continueOnCapturedContext);
        }
    }
}
总结来说:
1.带有Async的异步方法会在编译之后生成状态机。
2.当前执行线程会一直执行,把对应的MoveNext放到task的Continuation里面,也就是当作task完成的延续任务(回调事件)。
3.当前线程不是在执行异步任务的时候切换线程,而是一直执行方法内部,直到内部方法执行完成,所以我们在编写自定义的Task方法时,应该保证该方法能够进行立即的返回Task,不要执行过多的其他事情。
4.当发生线程切换时(也可能不切换),其实是看线程池的调度,让哪个线程去执行对应的Callback(MoveNext方法),所以我们有时候在调试时可以发现在await前和await之后其实可能不是一个线程id。
5.其实我们想一下WinForm和WPF的应用使用异步编写,其实当前执行线程已经返回了Task(异步方法编译后,是直接返回Task),也就是说执行完了,所以没有造成阻塞,而后来UI上的还能显示对应的元素,是因为任务调度完成,由其他线程去执行了这个操作,而这个线程保持了执行上下文和同步上下文。
结果
1.从上述解析可以看出,当在BackgroundService中直接在While循环里面写Thread.Sleep,当前执行线程会一直执行这段代码,也就是卡到这个while了,具体到编译后的代码就是卡到stateMachine.<>t__builder.Start(ref stateMachine),然后不会再继续往下执行了。
2.当我们使用async和await之后,并将Thread.Sleep替换为Task.Delay之后,当前方法就被编译成状态机,在当前线程执行到awaiter = Task.Delay(1000).GetAwaiter()之后,把当前MoveNext添加到这个Task的Continution,然后直接返回了Task,这样并不会阻塞当前线程继续往下执行,而后面的事情交给线程池空闲线程去执行。
3.如果我们不使用async和await的话,那么我们可以启动一个Task.Run(建议将TaskCreationOptions设置为LongRunning),这样的话该方法直接返回了Task,也不会阻塞当前线程继续往下执行。
4.对于Thread.Sleep在异步编程中不建议使用,建议使用Task.Delay,这样线程能够被更有效的利用起来。
以上就是笔者的看法,因为篇幅问题,没有贴太多的代码,有兴趣的小伙伴可以去看看源码就了解了,总结的可能会有一些理解错误的地方,还请评论指正。
C#关于在返回值为Task方法中使用Thread.Sleep引发的思考的更多相关文章
- 统计文件种类数+获取子shell返回值的其它方法
		
前言 只是作为一个shell的小小练习和日常统计用,瞎折腾的过程中也是摸到了获取子shell返回值的几种方法: 肯定还有别的方法,跟进程间的通信相关,希望你能提出建议和补充,谢谢~ 完整程序: #! ...
 - 写一方法用来计算1+2+3+...n,其中n作为参数输入,返回值可以由方法名返回,也可以由参数返回
		
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
 - 创建一个接口Shape,其中有抽象方法area,类Circle 、Rectangle实现area方法计算其面积并返回。又有Star实现Shape的area方法,其返回值是0,Star类另有一返回值boolean型方法isStar;在main方法里创建一个Vector,根据随机数的不同向其中加入Shape的不同子类对象(如是1,生成Circle对象;如是2,生成Rectangle对象;如是3,生成S
		
题目补充: 创建一个接口Shape,其中有抽象方法area,类Circle .Rectangle实现area方法计算其面积并返回. 又有Star实现Shape的area方法,其返回值是0,Star类另 ...
 - python使用threading获取线程函数返回值的实现方法
		
python使用threading获取线程函数返回值的实现方法 这篇文章主要介绍了python使用threading获取线程函数返回值的实现方法,需要的朋友可以参考下 threading用于提供线程相 ...
 - 在C#、Java中,为什么不能用[返回值]区别重载方法?
		
为什么方法签名只包含方法名和参数列表,而没有把返回值考虑进去? 如下有两个方法: void Func(){} string Func() { return string.Empty; } 编辑器可以根 ...
 - 为什么Java不能以返回值区分重载方法?
		
读者可能会想:"在区分重载方法的时候,为什么只能以类名和方法的形参列表作为标准呢?能否考虑用方法的返回值来区分呢?" 比如下面两个方法,虽然他们有相同的名字和形式参数,但却很容易区 ...
 - jquery ajax 不执行赋值,return没有返回值的解决方法
		
大家先看一段简单的jquery ajax 返回值的js 复制代码 代码如下: function getReturnAjax{ $.ajax({ type:"POST", url:& ...
 - dotNET开发之MVC中Controller返回值类型ActionResult方法总结
		
1.返回ViewResult视图结果,将视图呈现给网页 2. 返回PartialViewResult部分视图结果,主要用于返回部分视图内容 3. 返回ContentResult用户定义的内容类型 4. ...
 - class_copyIvarList方法获取实例变量问题引发的思考
		
在runtime.h中,你可以通过其中的一个方法来获取实例变量,那就是class_copyIvarList方法,具体的实现如下: - (NSArray *)ivarArray:(Class)cls { ...
 
随机推荐
- Java线程池七个参数详解
			
Java多线程开发时,常常用到线程池技术,这篇文章是对创建java线程池时的七个参数的详细解释. 从源码中可以看出,线程池的构造函数有7个参数,分别是corePoolSize.maximumPoolS ...
 - Lock 深入理解acquire和release原理源码及lock独有特性acquireInterruptibly和tryAcquireNanos
			
https://blog.csdn.net/sophia__yu/article/details/84313234 Lock是一个接口,通常会用ReentrantLock(可重入锁)来实现这个接口. ...
 - Spring Boot 自动配置原理是什么?
			
注解 @EnableAutoConfiguration, @Configuration, @ConditionalOnClass 就是自动配置的核心,首先它得是一个配置文件,其次根据类路径下是否有这个 ...
 - Java 中 ConcurrentHashMap 的并发度是什么?
			
ConcurrentHashMap 把实际 map 划分成若干部分来实现它的可扩展性和线程安 全.这种划分是使用并发度获得的,它是 ConcurrentHashMap 类构造函数的一 个可选参数,默认 ...
 - Thymeleaf使用遇见的问题,如字符串不相等
			
所属情况:内联JavaScript语言 当使用Thymeleaf取请求参数的值时,会出现数组符号包围值的问题,可通过[0]进行取出里面的字符串,取值之前需先判断值是否存在,不然会抛出索引0不存在问题 ...
 - SpringCloud个人笔记-02-Feign初体验
			
项目结构 sb_cloud_product <?xml version="1.0" encoding="UTF-8"?> <project x ...
 - 实验配置cisco单臂路由
			
第一步 搭建实验拓扑图 第二步 对路由器做基本配置 为路由器创建名称: 设置进入特权模式 口令:控制台登录密码:vty登录密码 禁用DNS查找: 加密明文密码: 创建一个向访问设备者发出警告的标语&q ...
 - 印度下架54款中国APP,中东政策逐年收紧,伊拉克成蓝海市场
			
2月14日,印度电子和信息技术部以"安全威胁"为由对有中国基因的54款App下达禁令,15日,印度税务部门对某些在印中资企业多个场所进行搜查. 本批下架的App中主要以应用类App ...
 - 小程序wx.getRecorderManager()录音管理
			
小程序中提供了两种录音的API,wx.startRecord和wx.getRecorderManager(),前一个现在微信团队已经不再维护,所以在这里写一下新的录音管理,比之前要强大 1.小程序录音 ...
 - PHP基于Thinkphp5的砍价活动相关设计
			
近期我们公司项目里陆陆续续有很多为了招引新用户的活动推出,砍价的活动由我来负责,我们的项目是在微信浏览器里供用户浏览访问. 大概描述:进入砍价活动列表页选择有意向的商品,用户点击商品图片可以看到WEB ...