这道题当时做的时候觉得是数论题,包含两个01串什么的,但是算重复的时候又很蛋疼,赛后听说是字符串,然后就觉得很有可能。昨天队友问到这一题,在学了AC自动机之后就觉得简单了许多。那个时候不懂AC自动机,不知道什么是状态,因此没有想到有效的dp方法。

题意是这样的,给定两个RD串,譬如RRD,DDR这样子的串,然后现在要你向右走(R)m步,向下走(D)n步,问有多少种走法能够包含给定的两个串。

一个传统的dp思想是这样的 dp[i][j][x][y][k],表示走了i步R,j步D,x,y表示两个串各匹配了多少各,k表示的是1,2串匹配的一个4进制数(00,01,10,11,你懂的,11表示都匹配了,10表示匹配了1串)。 但是这样一来空间开不下,二来当某个点失配的时候我们不知道当前的x,y会转移到哪里,这个时候很自然的,我们就想到了AC自动机,AC自动机压入两个串只需要不超过串的总长度的结点,而且当我们在自动机上转移的时候,我们可以知道失配的时候转移到哪里。所以重新定义一下就是 dp[i][j][k][x] k表示自动机上的状态,x表示4进制数。转移的时候就考虑由当前的状态dp[i][j][k][x]转移到dp[i+1][j][nxt1][nxtx] dp[i][j+1].... 其中新的状态nxt以及对应的四进制数转移就需要根据AC自动机的失配算出来。 如果预处理出当失配时回到的那个结点感觉可能会更快一些。 我代码里多写了个dfs,主要是预处理了 到达改状态时对应的四进制数,所以转移的时候只需要或一下就可以了。

第一次做AC自动机上的dp然后 1A了,好开心!

#pragma warning(disable:4996)
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cmath>
#include<queue>
#define maxn 2000
#define mod 1000000007
using namespace std; struct Trie
{
Trie * go[2];
Trie *fail;
int sta;
void init() {
memset(go, 0, sizeof(go)), fail == NULL;
sta = 0;
}
}pool[maxn],*root;
int tot; void insert(char *c,int type)
{
int len = strlen(c); Trie *p = root;
for (int i = 0; i < len; i++){
int ind = c[i] == 'R' ? 0 : 1;
if (p->go[ind] != NULL){
p = p->go[ind];
}
else{
pool[tot].init();
p->go[ind] = &pool[tot++];
p = p->go[ind];
}
}
p->sta |= type;
} void getFail()
{
queue<Trie*> que;
que.push(root);
root->fail = NULL;
while (!que.empty())
{
Trie *temp = que.front(); que.pop();
Trie *p = NULL;
for (int i = 0; i < 2; i++){
if (temp->go[i] != NULL){
if (temp == root) temp->go[i]->fail = root;
else{
p = temp->fail;
while (p != NULL){
if (p->go[i] != NULL){
temp->go[i]->fail = p->go[i];
break;
}
p = p->fail;
}
if (p == NULL) temp->go[i]->fail = root;
}
que.push(temp->go[i]);
}
}
}
} int dfs(Trie *x){
if (x == NULL) return 0;
return x->sta |= dfs(x->fail);
} int m, n;
int dp[120][120][240][4];
char str[120];
int main()
{
int T; cin >> T;
while (T--)
{ tot = 0; root = &pool[tot++]; root->init();
scanf("%d%d", &m, &n);
for (int i = 1; i <= 2; i++){
scanf("%s", str);
insert(str, i);
}
getFail();
for (int i = 0; i < tot; i++){
dfs(&pool[i]);
}
for (int i = 0; i <= m; i++){
for (int j = 0; j <= n; j++){
for (int k = 0; k <= tot; k++){
for (int x = 0; x < 4; x++){
dp[i][j][k][x] = 0;
}
}
}
}
dp[0][0][0][0] = 1;
for (int i = 0; i <= m; i++){
for (int j = 0; j <= n; j++){
for (int k = 0; k < tot; k++){
for (int x = 0; x < 4; x++){
Trie* p = &pool[k];
if (p->go[0] != NULL){
(dp[i + 1][j][p->go[0] - pool][x | p->go[0]->sta] += dp[i][j][k][x]) %= mod;
}
else{
Trie *temp = p->fail;
while (temp != NULL) {
if (temp->go[0] != NULL){
(dp[i + 1][j][temp->go[0] - pool][x | temp->go[0]->sta] += dp[i][j][k][x]) %= mod;
break;
}
temp = temp->fail;
}
if (temp == NULL) (dp[i + 1][j][0][x | root->sta] += dp[i][j][k][x]) %= mod;
}
if (p->go[1] != NULL){
(dp[i][j + 1][p->go[1] - pool][x | p->go[1]->sta] += dp[i][j][k][x]) %= mod;
}
else{
Trie *temp = p->fail;
while (temp != NULL) {
if (temp->go[1] != NULL){
(dp[i][j + 1][temp->go[1] - pool][x | temp->go[1]->sta] += dp[i][j][k][x]) %= mod;
break;
}
temp = temp->fail;
}
if (temp == NULL) (dp[i][j + 1][0][x | root->sta] += dp[i][j][k][x]) %= mod;
}
}
}
}
}
int ans = 0;
for (int i = 0; i < tot; i++){
ans = ans + dp[m][n][i][3]; ans %= mod;
}
printf("%d\n", ans);
}
return 0;
}

HDU4758 Walk Through Squares AC自动机&&dp的更多相关文章

  1. HDU 4758 Walk Through Squares(AC自动机+DP)

    题目链接 难得出一个AC自动机,我还没做到这个题呢...这题思路不难想,小小的状压出一维来,不过,D和R,让我wa死了,AC自动机,还得刷啊... #include<iostream> # ...

  2. hdu4758 Walk Through Squares (AC自己主动机+DP)

    Walk Through Squares Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others ...

  3. HDU 4758 Walk Through Squares( AC自动机 + 状态压缩DP )

    题意:给你两个串A,B, 问一个串长为M+N且包含A和B且恰好包含M个R的字符串有多少种组合方式,所有字符串中均只含有字符L和R. dp[i][j][k][S]表示串长为i,有j个R,在自动机中的状态 ...

  4. hdu4758Walk Through Squares(ac自动机+dp)

    链接 dp[x][y][node][sta] 表示走到在x,y位置node节点时状态为sta的方法数,因为只有2个病毒串,这时候的状态只有4种,根据可走的方向转移一下. 这题输入的是m.N,先列后行, ...

  5. HDU4758 Walk Through Squares(AC自动机+状压DP)

    题目大概说有个n×m的格子,有两种走法,每种走法都是一个包含D或R的序列,D表示向下走R表示向右走.问从左上角走到右下角的走法有多少种走法包含那两种走法. D要走n次,R要走m次,容易想到用AC自动机 ...

  6. HDU 4758 Walk Through Squares (2013南京网络赛1011题,AC自动机+DP)

    Walk Through Squares Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Oth ...

  7. HDU3341 Lost's revenge(AC自动机&&dp)

    一看到ACGT就会想起AC自动机上的dp,这种奇怪的联想可能是源于某道叫DNA什么的题的. 题意,给你很多个长度不大于10的小串,小串最多有50个,然后有一个长度<40的串,然后让你将这个这个长 ...

  8. hdu4758 Walk Through Squares

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=4758 题目: Walk Through Squares Time Limit: 4000/20 ...

  9. POJ1625 Censored!(AC自动机+DP)

    题目问长度m不包含一些不文明单词的字符串有多少个. 依然是水水的AC自动机+DP..做完后发现居然和POJ2778是一道题,回过头来看都水水的... dp[i][j]表示长度i(在自动机转移i步)且后 ...

随机推荐

  1. GDAL中RasterIO函数(把文件读取为一个一维数组)和ReadBlock函数(读取栅格数据块)

    CPLErr GDALRasterBand::RasterIO ( GDALRWFlag eRWFlag, int nXOff, int nYOff, int nXSize, int nYSize, ...

  2. Makefile 基本知识

    Technorati 标签: Makefile 基本知识   最常见的书写方式: CC = gcc LD = ld STRIP = strip CFLAGS := -Os -static -DEZ_O ...

  3. C指针赋值

    Node* p = A; Node* f = B; Node* t; t = p; t = f 本人试图让p指向B,但这样操作是不行的.如下图:只是改变了t的指向,p并没有变

  4. js 求前n项的 fibnaci 数列和

    function f(n) { var num1 = 1, num2 = 1; if (n == 1) document.write(num1);//n=1,输出1 else if (n > 1 ...

  5. zedboard U盘挂载+交叉编译helloworld

    交叉编译环境见http://blog.csdn.net/xiabodan/article/details/22717175 1:编写hello.c文件 #include<stdio.h> ...

  6. zedboard之ubuntu环境变量设置

    在Ubuntu中有如下几个文件可以设置环境变量 1./etc/profile:在登录时,操作系统定制用户环境时使用的第一个文件,此文件为系统的每个用户设置环境信息,当用户第一次登录时,该文件被执行. ...

  7. 在指定的DSN中,驱动程序和应用程序之间的体系结构不匹配

    今天在使用plsql通过odbc导入excel数据时发生了一个错误,截图如下: 错误提示为:驱动程序和应用程序之间的体系结构不匹配. 后来百度了一下,得出答案.系统是win10 64位.excel驱动 ...

  8. HTML5 Shiv – 让该死的IE系列支持HTML5吧

    HTML5能为我们做的事儿很多,最为可口的就是语义化标签的应用,如果你已经在Chrome或者其他支持HTML5的浏览器上用过它的牛x,那这篇文章对你一定有用,因为现在你也可以在IE上用到HTML5. ...

  9. TortoiseGit 安装和使用的图文教程

    TortoiseGit.SourceTree都是Windows下不错的Git客户端工具,下面介绍一下TortoiseGit安装和使用的方法. 安装TortoiseGit并使用它需要两个软件:Torto ...

  10. nginx服务器配置多域名

    nginx服务器支持配置多站点,我们可以通过配置子域名让你的一个域名下放置多个项目. 那么如何实现这个过程呢? 网络上的许多方案,有些写的过于繁杂,有些则是配置有误,或者说,有些配置项是要根据自己的主 ...