This section discusses Spring Security's Cross Site Request Forgery (CSRF) support.

13.1 CSRF Attacks

Before we discuss how Spring Security can protect applications from CSRF attacks, we will explain what a CSRF attack is. Let's take a look at a concrete example to get a better understanding.

Assume that your bank's website provides a form that allows transferring money from the currently logged in user to another bank account. For example, the HTTP request might look like:

POST /transfer HTTP/1.1
Host: bank.example.com
Cookie: JSESSIONID=randomid; Domain=bank.example.com; Secure; HttpOnly
Content-Type: application/x-www-form-urlencoded amount=100.00&routingNumber=1234&account=9876

Now pretend you authenticate to your bank's website and then, without logging out, visit an evil website. The evil website contains an HTML page with the following form:

<form action="https://bank.example.com/transfer" method="post">
<input type="hidden"
name="amount"
value="100.00"/>
<input type="hidden"
name="routingNumber"
value="evilsRoutingNumber"/>
<input type="hidden"
name="account"
value="evilsAccountNumber"/>
<input type="submit"
value="Win Money!"/>
</form>

You like to win money, so you click on the submit button. In the process, you have unintentionally transferred $100 to a malicious user. This happens because, while the evil website cannot see your cookies, the cookies associated with your bank are still sent along with the request.

Worst yet, this whole process could have been automated using JavaScript. This means you didn't even need to click on the button. So how do we protect ourselves from such attacks?

13.2 Synchronizer Token Pattern

The issue is that the HTTP request from the bank's website and the request from the evil website are exactly the same. This means there is no way to reject requests coming from the evil website and allow requests coming from the bank's website. To protect against CSRF attacks we need to ensure there is something in the request that the evil site is unable to provide.

One solution is to use the Synchronizer Token Pattern. This solution is to ensure that each request requires, in addition to our session cookie, a randomly generated token as an HTTP parameter. When a request is submitted, the server must look up the expected value for the parameter and compare it against the actual value in the request. If the values do not match, the request should fail.

We can relax the expectations to only require the token for each HTTP request that updates state. This can be safely done since the same origin policy ensures the evil site cannot read the response. Additionally, we do not want to include the random token in HTTP GET as this can cause the tokens to be leaked.

Let's take a look at how our example would change. Assume the randomly generated token is present in an HTTP parameter named _csrf. For example, the request to transfer money would look like this:

POST /transfer HTTP/1.1
Host: bank.example.com
Cookie: JSESSIONID=randomid; Domain=bank.example.com; Secure; HttpOnly
Content-Type: application/x-www-form-urlencoded amount=100.00&routingNumber=1234&account=9876&_csrf=<secure-random>

You will notice that we added the _csrf parameter with a random value. Now the evil website will not be able to guess the correct value for the _csrf parameter (which must be explicitly provided on the evil website) and the transfer will fail when the server compares the actual token to the expected token.

13.3 When to use CSRF protection

When you use CSRF protection? Our recommendation is to use CSRF protection for any request that could be processed by a browser by normal users. If you are only creating a service that is used by non-browser clients, you will likely want to disable CSRF protection.

13.3.1 CSRF protection and JSON

A common question is, but do I need to protect JSON requests made by javascript? The short answer is, it depends. However, you must be very careful as there are CSRF exploits that can impact JSON requests. For example, a malicious user can create a CSRF with JSON using the following form:

<form action="https://bank.example.com/transfer" method="post" enctype="text/plain">
<input name='{"amount":100,"routingNumber":"evilsRoutingNumber","account":"evilsAccountNumber", "ignore_me":"' value='test"}' type='hidden'>
<input type="submit"
value="Win Money!"/>
</form>

This will produce the following JSON structure

{ "amount":100,
"routingNumber": "evilsRoutingNumber",
"account": "evilsAccountNumber",
"ignore_me": "=test"
}

If an application were not validating the Content-Type, then it would be exposed to this exploit. Depending on the setup, a Spring MVC application that validates the Content-Type could still be exploited by updating the URL suffix to end with ".json" as shown below:

<form action="https://bank.example.com/transfer.json" method="post" enctype="text/plain">
<input name='{"amount":100,"routingNumber":"evilsRoutingNumber","account":"evilsAccountNumber", "ignore_me":"' value='test"}' type='hidden'>
<input type="submit"
value="Win Money!"/>
</form>

13.3.2 CSRF and Stateless Browser Applications

What if my application is stateless? That doesn't necessarily mean you are protected. In fact, if a user does not need to perform any actions in the web browser for a given request, they are likely still vulnerable to CSRF attacks.

For example, consider an application uses a custom cookie that contains all the state within it for authentication instead of the JSESSIONID. When the CSRF attack is made the custom cookie will be sent with the request in the same manner that the JSESSIONID cookie was sent in our previous example.

User's using basic authentication are also vulnerable to CSRF attacks since the browser will automatically include the username password in any requests in the same manner that the JSESSIONID cookie was sent in our previous example.

13.4 Using Spring Security CSRF Protection

So what are the steps necessary to use Spring Security's to protect our site against CSRF attacks? The steps to using Spring Security's CSRF protection are outlined below:

13.4.1 Use proper HTTP verbs

The first step to protecting against CSRF attacks is to ensure your website uses proper HTTP verbs. Specifically, before Spring Security's CSRF support can be of use, you need to be certain that your application is using PATCH, POST, PUT, and/or DELETE for anything that modifies state.

This is not a limitation of Spring Security's support, but instead a general requirement for proper CSRF prevention. The reason is that including private information in an HTTP GET can cause the information to be leaked. See RFC 2616 Section 15.1.3 Encoding Sensitive Information in URI's for general guidance on using POST instead of GET for sensitive information.

13.4.2 Configure CSRF Protection

The next step is to include Spring Security's CSRF protection within your application. Some frameworks handle invalid CSRF tokens by invaliding the user's session, but this causes its own problems. Instead by default Spring Security's CSRF protection will produce an HTTP 403 access denied. This can be customized by configuring theAccessDeniedHandler to process InvalidCsrfTokenException differently.

For passivity reasons, if you are using the XML configuration, CSRF protection must be explicitly enabled using the <csrf> element. Refer to the <csrf> element's documentation for additional customizations.

Note

SEC-2347 is logged to ensure Spring Security 4.x's XML namespace configuration will enable CSRF protection by default.

<http>
<!-- ... -->
<csrf />
</http>

CSRF protection is enabled by default with Java configuration. If you would like to disable CSRF, the corresponding Java configuration can be seen below. Refer to the Javadoc of csrf() for additional customizations in how CSRF protection is configured.

@EnableWebSecurity
@Configuration
public class WebSecurityConfig extends
WebSecurityConfigurerAdapter { @Override
protected void configure(HttpSecurity http) throws Exception {
http
.csrf().disable();
}
}

13.4.3 Include the CSRF Token

Form Submissions

The last step is to ensure that you include the CSRF token in all PATCH, POST, PUT, and DELETE methods. This can be done using the _csrf request attribute to obtain the current CsrfToken. An example of doing this with a JSP is shown below:

<c:url var="logoutUrl" value="/logout"/>
<form action="${logoutUrl}"
method="post">
<input type="submit"
value="Log out" />
<input type="hidden"
name="${_csrf.parameterName}"
value="${_csrf.token}"/>
</form>
Note

If you are using Spring MVC <form:form> tag, the CsrfToken is automatically included for you using the CsrfRequestDataValueProcessor.

Ajax and JSON Requests

If you using JSON, then it is not possible to submit the CSRF token within an HTTP parameter. Instead you can submit the token within a HTTP header. A typical pattern would be to include the CSRF token within your meta tags. An example with a JSP is shown below:

<html>
<head>
<meta name="_csrf" content="${_csrf.token}"/>
<!-- default header name is X-CSRF-TOKEN -->
<meta name="_csrf_header" content="${_csrf.headerName}"/>
<!-- ... -->
</head>
<!-- ... -->

You can then include the token within all your Ajax requests. If you were using jQuery, this could be done with the following:

$(function () {
var token = $("meta[name='_csrf']").attr("content");
var header = $("meta[name='_csrf_header']").attr("content");
$(document).ajaxSend(function(e, xhr, options) {
xhr.setRequestHeader(header, token);
});
});

As a alternative to jQuery, we recommend using cujoJS’s rest.js. rest.js provides advanced support for working with HTTP request and responses in RESTful ways. A core capability is the ability to contextualize the HTTP client adding behavior as needed by chaining interceptors on to the client.

var client = rest.chain(csrf, {
token: $("meta[name='_csrf']").attr("content"),
name: $("meta[name='_csrf_header']").attr("content")
});

The configured client can be shared with any component of the application that needs to make a request to the CSRF protected resource. One significant different between rest.js and jQuery is that only requests made with the configured client will contain the CSRF token, vs jQuery where all requests will include the token. The ability to scope which requests receive the token helps guard against leaking the CSRF token to a third party. Please refer to the rest.js reference documentation for more information on rest.js.

13.5 CSRF Caveats

There are a few caveats when implementing CSRF.

13.5.1 Timeouts

One issue is that the expected CSRF token is stored in the HttpSession, so as soon as the HttpSession expires your configured AccessDeniedHandler will receive a InvalidCsrfTokenException. If you are using the default AccessDeniedHandler, the browser will get an HTTP 403 and display a poor error message.

Note

One might ask why the expected CsrfToken isn't stored in a cookie. This is because there are known exploits in which headers (i.e. specify the cookies) can be set by another domain. This is the same reason Ruby on Rails no longer skips CSRF checks when the header X-Requested-With is present. Seethis webappsec.org thread for details on how to perform the exploit. Another disadvantage is that by removing the state (i.e. the timeout) you lose the ability to forcibly terminate the token if something got compromised.

A simple way to mitigate an active user experiencing a timeout is to have some JavaScript that lets the user know their session is about to expire. The user can click a button to continue and refresh the session.

Alternatively, specifying a custom AccessDeniedHandler allows you to process the InvalidCsrfTokenException anyway you like. For an example of how to customize theAccessDeniedHandler refer to the provided links for both xml and Java configuration.

13.5.2 Logging In

In order to protect against forging log in requests the log in form should be protected against CSRF attacks too. Since the CsrfToken is stored in HttpSession, this means an HttpSession will be created as soon as CsrfToken token attribute is accessed. While this sounds bad in a RESTful / stateless architecture the reality is that state is necessary to implement practical security. Without state, we have nothing we can do if a token is compromised. Practically speaking, the CSRF token is quite small in size and should have a negligible impact on our architecture.

13.5.3 Logging Out

Adding CSRF will update the LogoutFilter to only use HTTP POST. This ensures that log out requires a CSRF token and that a malicious user cannot forcibly log out your users.

One approach is to use a form for log out. If you really want a link, you can use JavaScript to have the link perform a POST (i.e. maybe on a hidden form). For browsers with JavaScript that is disabled, you can optionally have the link take the user to a log out confirmation page that will perform the POST.

13.5.4 Multipart (file upload)

There are two options to using CSRF protection with multipart/form-data. Each option has its tradeoffs.

Note

More information about using multipart forms with Spring can be found within the 17.10 Spring's multipart (file upload) support section of the Spring reference.

Placing MultipartFilter before Spring Security

The first option is to ensure that the MultipartFilter is specified before the Spring Security filter. Specifying the MultipartFilter after the Spring Security filter means that there is no authorization for invoking the MultipartFilter which means anyone can place temporary files on your server. However, only authorized users will be able to submit a File that is processed by your application. In general, this is the recommended approach because the temporary file upload should have a negligble impact on most servers.

To ensure MultipartFilter is specified before the Spring Security filter with java configuration, users can override beforeSpringSecurityFilterChain as shown below:

public class SecurityApplicationInitializer extends AbstractSecurityWebApplicationInitializer {

    @Override
protected void beforeSpringSecurityFilterChain(ServletContext servletContext) {
insertFilters(servletContext, new MultipartFilter());
}
}

To ensure MultipartFilter is specified before the Spring Security filter with XML configuration, users can ensure the <filter-mapping> element of the MultipartFilter is placed before the springSecurityFilterChain within the web.xml as shown below:

<filter>
<filter-name>MultipartFilter</filter-name>
<filter-class>org.springframework.web.multipart.support.MultipartFilter</filter-class>
</filter>
<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>
</filter>
<filter-mapping>
<filter-name>MultipartFilter</filter-name>
<servlet-name>/*</servlet-name>
</filter-mapping>
<filter-mapping>
<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

Include CSRF token in action

If allowing unauthorized users to upload temporariy files is not acceptable, an alternative is to place the MultipartFilter after the Spring Security filter and include the CSRF as a query parameter in the action attribute of the form. An example with a jsp is shown below

<form action="./upload?${_csrf.parameterName}=${_csrf.token}" method="post" enctype="multipart/form-data">

The disadvantage to this approach is that query parameters can be leaked. More genearlly, it is considered best practice to place sensitive data within the body or headers to ensure it is not leaked. Additional information can be found in RFC 2616 Section 15.1.3 Encoding Sensitive Information in URI's.

13.5.5 HiddenHttpMethodFilter

The HiddenHttpMethodFilter should be placed before the Spring Security filter. In general this is true, but it could have additional implications when protecting against CSRF attacks.

Note that the HiddenHttpMethodFilter only overrides the HTTP method on a POST, so this is actually unlikely to cause any real problems. However, it is still best practice to ensure it is placed before Spring Security's filters.

13.6 Overriding Defaults

Spring Security's goal is to provide defaults that protect your users from exploits. This does not mean that you are forced to accept all of its defaults.

For example, you can provide a custom CsrfTokenRepository to override the way in which the CsrfToken is stored.

You can also specify a custom RequestMatcher to determine which requests are protected by CSRF (i.e. perhaps you don't care if log out is exploited). In short, if Spring Security's CSRF protection doesn't behave exactly as you want it, you are able to customize the behavior. Refer to the <csrf> documentation for details on how to make these customizations with XML and the CsrfConfigurer javadoc for details on how to make these customizations when using Java configuration.

Cross Site Request Forgery (CSRF)--spring security -转的更多相关文章

  1. WebGoat学习——跨站请求伪造(Cross Site Request Forgery (CSRF))

    跨站请求伪造(Cross Site Request Forgery (CSRF)) 跨站请求伪造(Cross Site Request Forgery (CSRF))也被称为:one click at ...

  2. 跨站请求伪造(Cross Site Request Forgery (CSRF))

    跨站请求伪造(Cross Site Request Forgery (CSRF)) 跨站请求伪造(Cross Site Request Forgery (CSRF)) 跨站请求伪造(Cross Sit ...

  3. Vulnerability: Cross Site Request Forgery (CSRF)

    CSRF跨站请求伪造 这是一种网络攻击方式,也被称为one-click attack或者session riding 攻击原理 CSRF攻击利用网站对于用户网页浏览器的信任,挟持用户当前已登陆的Web ...

  4. CSRF Laravel Cross Site Request Forgery protection¶

    Laravel 使得防止应用 遭到跨站请求伪造攻击变得简单. Laravel 自动为每一个被应用管理的有效用户会话生成一个 CSRF "令牌",该令牌用于验证授权用 户和发起请求者 ...

  5. DVWA 黑客攻防演练(十四)CSRF 攻击 Cross Site Request Forgery

    这么多攻击中,CSRF 攻击,全称是 Cross Site Request Forgery,翻译过来是跨站请求伪造可谓是最防不胜防之一.比如删除一篇文章,添加一笔钱之类,如果开发者是没有考虑到会被 C ...

  6. CSRF(Cross Site Request Forgery, 跨站域请求伪造)

    CSRF(Cross Site Request Forgery, 跨站域请求伪造) CSRF 背景与介绍 CSRF(Cross Site Request Forgery, 跨站域请求伪造)是一种网络的 ...

  7. CSRF(Cross Site Request Forgery, 跨站请求伪造)

    一.CSRF 背景与介绍 CSRF(Cross Site Request Forgery, 跨站域请求伪造)是一种网络的攻击方式,它在 2007 年曾被列为互联网 20 大安全隐患之一.其他安全隐患, ...

  8. 转: CSRF(Cross Site Request Forgery 跨站域请求伪造) 背景与介绍

    from:  https://www.ibm.com/developerworks/cn/web/1102_niugang_csrf/   在 IBM Bluemix 云平台上开发并部署您的下一个应用 ...

  9. Healwire Online Pharmacy 3.0 Cross Site Request Forgery / Cross Site Scripting

    Healwire Online Pharmacy version 3.0 suffers from cross site request forgery and cross site scriptin ...

随机推荐

  1. 排序算法:七大排序算法的PHP实现

    由于最近在找工作,面试中难免会遇到一些算法题,所以就用PHP把七大排序算法都实现了一遍,也当做是一种复习于沉淀. 冒泡排序 2. 选择排序 3. 插入排序 4. 快速排序 5. 希尔排序 6. 归并排 ...

  2. Tomcat中的线程池StandardThreadExecutor

    之所以今天讨论它,因为在motan的的NettyServer中利用它这个线程池可以作为业务线程池,它定制了一个自己的线程池.当然还是基于jdk中的ThreadExecutor中的构造方法和execut ...

  3. cocos2d-x 不能在android真机debug的问题

    最近在做cocos2d-x开发的时候,发现在android真机上不能调试C++代码,显示如下警告信息 Ignoring packet error, continuing... warning: unr ...

  4. 修改 myeclipse8.5 servlet 模板

    在myeclipse8.5的安装目录下找到 \Common\plugins下的com.genuitec.eclipse.wizards_8.5.0.zmyeclipse75020090612.jar ...

  5. Hello, Github Blog

    hello, I am using github to write a post, I am so exciting- 原文地址: http://vblog.vell001.ml/2014/03/08 ...

  6. 《Genesis-3D开源游戏引擎-官方录制系列视频教程:基础操作篇》

    注:本系列教程仅针对引擎编辑器:v1.2.2及以下版本 G3D基础操作   第一课<G3D编辑器初探> G3D编辑器介绍,依托于一个复杂场景,讲解了场景视图及其基本操作,属性面板和工具栏的 ...

  7. libvirt虚拟系统如何增加usb设备

    之前干这些事情都是通过virt-manager来搞定的.不过由于这个图形界面不太方便,而且现在没法打开(具体原因不详,每次打开提示一些方法未实现什么的),所以试下用libvirt的命令virsh来搞定 ...

  8. TreeMap实现原理

    摘要 研究项目底层代码时,发现项目中的数据的缓存用的是TreeMap来实现对数据的缓存管理.本片博文就TreeMap的源码.原理以及用法做一个探究 在用TreeMap之前我们要对TreeMap有个整体 ...

  9. 深入探究frame和bounds的区别以及setbounds使用

    [转自]http://blog.csdn.net/hherima/article/details/39501857 在iOS开发中经常遇到两个词Frame和bounds,本文主要阐述Frame和bou ...

  10. linux svn使用

    SVN是一种版本管理系统,前身是CVS,是开源软件的基石.即使在沟通充分的情况下,多人维护同一份源代码的一定也会出现混乱的情况,版本管理系统就是为了解决这些问题. SVN中的一些概念 : a. rep ...