题意:给定一个最大400*400的矩阵,每次操作可以将某一行或某一列乘上一个数,问能否通过这样的操作使得矩阵内的每个数都在[L,R]的区间内。

析:再把题意说明白一点就是是否存在ai,bj,使得l<=cij*(ai/bj)<=u (1<=i<=n,1<=j<=m)成立。

首先把cij先除到两边去,就变成了l'<=ai/bj<=u',由于差分约束要是的减,怎么变成减法呢?取对数呗,两边取对数得到log(l')<=log(ai)-log(bj)<=log(u')。

然后把ai, bj看成是两个点,那两个是权值,就可以差分约束了,但是。。这个题太坑了,会TLE,必须要判断好结束条件,就是访问次数超过sqrt(m+n),

就结束,如果不开根号,就会一直TLE。。。。有没有天理了。。。。

析:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <stack>
using namespace std ; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-10;
const int maxn = 800 + 5;
const int mod = 1e9 + 7;
const char *mark = "+-*";
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
int n, m;
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int head[maxn], to[maxn*maxn/2], Next[maxn*maxn/2], cnt;
double w[maxn*maxn/2], l, u, d[maxn]; void addedge(int u, int v, double c){
to[cnt] = v;
w[cnt] = c;
Next[cnt] = head[u];
head[u] = cnt++;
}
int vis[maxn], num[maxn]; bool spfa(){
memset(vis, 0, sizeof(vis));
memset(num, 0, sizeof(num));
fill(d, d+n+m+1, inf);
queue<int> q;
vis[0] = 1; d[0] = 0; num[0] = 1;
q.push(0);
int limit = sqrt(m+n+0.5);//不开根号,想AC?都到没有。 while(!q.empty()){
int u = q.front(); q.pop();
vis[u] = 0;
for(int i = head[u]; i != -1; i = Next[i]){
int v = to[i];
double c = w[i];
if(!vis[v] && d[v] > d[u] + c){
if(++num[v] > limit) return false;
d[v] = d[u] + c;
q.push(v);
vis[v] = 1;
}
}
}
return true;
} int main(){
while(scanf("%d %d %lf %lf", &n, &m, &l, &u) == 4){
memset(head, -1, sizeof(head));
cnt = 0;
double ll = log(l);
double uu = log(u);
for(int i = 0; i < n; ++i){
for(int j = 0; j < m; ++j){
double x;
scanf("%lf", &x);
x = log(x);
addedge(i, j+n, x-ll);
addedge(j+n, i, uu-x);
}
}
if(spfa()) puts("YES");
else puts("NO");
}
return 0;
}

  

HDU 3666 THE MATRIX PROBLEM (差分约束)的更多相关文章

  1. HDU 3666.THE MATRIX PROBLEM 差分约束系统

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  2. HDU 3666 THE MATRIX PROBLEM (差分约束 深搜 & 广搜)

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU3666 THE MATRIX PROBLEM (差分约束+取对数去系数)(对退出情况存疑)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  4. HDU3666-THE MATRIX PROBLEM(差分约束-不等式解得存在性判断 对数转化)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  5. hduTHE MATRIX PROBLEM(差分约束)

    题目请戳这里 题目大意:给一个n*m的矩阵,求是否存在这样两个序列:a1,a2...an,b1,b2,...,bm,使得矩阵的第i行乘以ai,第j列除以bj后,矩阵的每一个数都在L和U之间. 题目分析 ...

  6. HDU 3666 THE MATRIX PROBLEM (差分约束,最短路)

    题意: 给一个n*m矩阵,每个格子上有一个数字a[i][j],给定L和U,问:是否有这样两个序列{a1...an}和{b1...bn},满足 L<=a[i][j]*ai/bj<=U .若存 ...

  7. hdu 3666 THE MATRIX PROBLEM

    差分约束系统. 根据题意,可以写出不等式 L <= (Xij * Ai) / Bj <= U 即 Ai/Bj<=U/Xij和Ai/Bj>=L/Xij 由于差分约束系统是减法.. ...

  8. hdu 1534 Schedule Problem (差分约束)

    Schedule Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. HDU King (非连通图的差分约束,经典好题)

    King Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

随机推荐

  1. std::ofstream由二进制流写文件的问题

    从MPQ包中读取二进制流出来然后文件写到硬盘. DWORD size = SFileGetSize(hFile); char* buffer = new char[size]; std::ofstre ...

  2. 好!recover-binary-search-tree(难)& 两种好的空间O(n)解法 & 空间O(1)解法

    https://leetcode.com/mockinterview/session/result/xyc51it/https://leetcode.com/problems/recover-bina ...

  3. hdu 1243 反恐训练营(dp 最大公共子序列变形)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1243 d[i][j] 代表第i 个字符与第 j 个字符的最大的得分.,, 最大公共子序列变形 #inclu ...

  4. Android PRODUCT_COPY_FILES 自动拷贝文件

    /********************************************************************** * Android PRODUCT_COPY_FILES ...

  5. 对于GLM的理解,与方差分析的对比

    最近遇到一个问题,如果因变量为一个连续变量(如胰岛素水平),主要考察的变量为分组变量(如正常血糖组,前糖尿病组,糖尿病组三组),现在的目的是想看调整多种变量(包括多个连续性变量和分类变量)后,胰岛素水 ...

  6. django - get_or_create() 使用提醒

    [omron - debug] user_id建表的时候,不能使用unique,因为一个用户,可能有多个product_id,相对应的是,get_or_create()中的查询参数,如果在建表中有un ...

  7. 【转】iOS-延迟操作方法总结

    原文网址:http://lysongzi.com/2016/01/30/iOS-%E5%BB%B6%E8%BF%9F%E6%93%8D%E4%BD%9C%E6%96%B9%E6%B3%95%E6%80 ...

  8. Redis入门教程:特性及数据类型的操作

    虽然Redis已经很火了,相信还是有很多同学对Redis只是有所听闻或者了解并不全面,下面是一个比较系统的Redis介绍,对Redis的特性及各种数据类型及操作进行了介绍.是一个很不错的Redis入门 ...

  9. Storm入门教程 第二章 构建Topology[转]

    2.1 Storm基本概念 在运行一个Storm任务之前,需要了解一些概念: Topologies Streams Spouts Bolts Stream groupings Reliability ...

  10. 帮同事写了几行代码,在 安装/卸载 程序里 注册/卸载 OCX控件

    写了个小控制台程序,这个程序用来注册 / 卸载OCX控件,用在Inno Setup做的安装卸载程序里. #include "stdafx.h" #include <windo ...