简易解释:在曲面中插入一个平面所形成的轮廓,即是该轮廓的水平集表示,可见,该轮廓的水平集表示有多个。对于图像分割,在图像力的驱动下曲面进行更新。

轮廓的数学表达有隐式和显式两种表达。用曲面演化代替Front (C)演进。

C(t) = {(x, y)|φ(x, y, t) = 0}

∂φ/ ∂t + F|∇φ| =0 (1)

φ(x, y, 0) = φ0(x, y) 方程的本质是什么? 几何解释是什么

edge-based level set

∂φ /∂t = g(∇I)|∇φ| (div ( ∇φ /|∇φ| _ + ν ) (2)

φ(x, y, 0) = φ0(x, y) based on mean curvature motion by Caselles et 1993

∂φ /∂t = |∇φ| (−ν + ν/ (M1 − M2) )(|∇GI| − M2) (3)

φ(x, y, 0) = φ0(x, y)     Malladi et 1993

 

∂φ /∂t = |∇φ|div g(I) ∇φ /|∇φ| _ + νg(|∇I|) = g(I)|∇φ|div (
∇φ /|∇φ| _+∇g(I) · ∇φ + νg(|∇I|)

φ(x, y, 0) = φ0(x, y)
(4) Kichenassamy et 1995 and Caselles et 1995

An abstract representation common to all edge-based partial differential equation(PDE) is as follows:

∂φ /∂t = −αA(x) · ∇φ − βP(x)|∇φ| + γZ(x)κ|∇φ| (5)

φ(x, y, 0) = φ0(x, y) A is an advection term ; P is a propagation(expansion) term ; Z is a spatial modifier term for the mean curvature k.

region-based level-sets

Region-based level-sets segment the image into objects based on region statistics (rather than just object edges) of intensity, tex- ture, or color values.

F(c1, c2, φ) =
Inside(C)
(I(x) − c1)2dx +
Outside(C)
(I(x) − c2)2dx + ν · Area(C) +μ · Length(C) (6)

 

by Chan and Vese 2001

3.1 DOMAIN REPRESENTATION …… 不懂

3.2 水平集函数

定义了一个抽象的水平集函数基类 itk::LevelSetBase

所有的水平集函数类实现具体的成员函数返回the level-set value [φ(x,y)], gradient(∇φ),Hessian(∇
2
φ),Laplacian(φ xx + φ
yy ),gradient norm(|∇φ|), and mean curvature (κ = div(∇φ/|∇φ| )) given its underlying representation (continuous or discrete image or mesh). Thus,the level-set equation, term, and evolution classes are independent of the underlying domain representation which facilitates the implementation of a wide variety of level-set methods.

图像的离散化表示itk::DiscreteLevlSetImage 被具体实现为Dense 和Sparse 情况。三种Sparse的表示:Whitaker 、Shif、Malcolm。(narrow-band)

3.2.1图像到水平集转换 BinaryImageToLevelSetAdaptorbase

3.3RESTRICTED LEVEL-SET DOMAINS 限制水平集域

在图像子集域内进行水平集演化,划分成不同子域。 A helper base class (LevelSetDomainPartitionBase) is used to define the location and size of the level-set domains relative to Ὼ (Figure3A).

Each grid point stores a list of the active level-set function ids. For the case when there are thousands of level-sets, populating a list image by checking overlap at each pixel is time-consuming. Therefore, we further specialized into a class itk::LevelSetDomainPartitionImageWithKdTree. This class uses a Kd-tree data structure that contains the centroids of the level-set domains. The Kd- tree is used to query nearby level-set functions at each pixel and check for overlap.This enables the simultaneous evolution of thousands of level-set functions thereby expanding the applicability of level-set procedures to tracking large numbers of objects and in large images. Note that there is an initial overhead associated with building the Kd-tree that can be avoided for cases involving a small number of level-set functions.

3.4 terms

水平集方程是各项的加权和。The term base class implements functions [Evaluate(.)] for computing the contribution from a term toward the level-set update.

3.5 container-based design

Container 是什么?

Different types of terms arising from edge-based and region-based level-set methods such as the propaga-

tion, Laplacian, advection, curvature, and region-based terms described in Equations 4 and 7 derive directly from LevelSetEquationTermBase:

we used containers to store level-set function objects, equation objects, and their constitutive terms。

Leve-set container term containers level-set equation container

3.6 Level-set evolution

3.7 stopping criterion

itk::StoppingCriterionBase

3.8 user-interaction

3.9 visualization

计划:怎样理解水平集方法 ITK Level set V4 框架介绍的更多相关文章

  1. 拓扑优化中SIMP方法与水平集方法有何优缺点,水平集法变换到高维,不是更复杂了

    作者:周平章链接:https://www.zhihu.com/question/52008623/answer/187927508来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...

  2. DRLSE 水平集算法总结

    背景: Level Set方法是美国数学家Osher(加州大学洛杉矶分校)和Sethian(加州大学伯克利分校)合作提出的.后者因为对Level Set的贡献获得了去年美国数学会与工业应用数学会联合颁 ...

  3. 从JAVA多线程理解到集群分布式和网络设计的浅析

    对于JAVA多线程的应用非常广泛,现在的系统没有多线程几乎什么也做不了,很多时候我们在何种场合如何应用多线程成为一种首先需要选择的问题,另外关于java多线程的知识也是非常的多,本文中先介绍和说明一些 ...

  4. oracle 字符串切割成结果集方法

    oracle字符串切割几种方式 方法一: SELECT COLUMN_VALUE FROM TABLE(SYS.ODCIVARCHAR2LIST('1','2','3','4','5')); 方法二: ...

  5. 关于java多线程理解到集群分布式和网络设计的浅析

    对于JAVA多线程的应用非常广泛,现在的系统没有多线程几乎什么也做不了,很多时候我们在何种场合如何应用多线程成为一种首先需要选择的问题, 另外关于java多线程的知识也是非常的多,本文中先介绍和说明一 ...

  6. win7计划任务执行php脚本方法

    第一步:编写bat文件 方法1:php方法 方法2:exploere浏览器 电脑上新建一个txt文本,把代码放进去.然后把他另存为xxx.bat explorer "http://网址/e/ ...

  7. js中的回调函数的理解和使用方法

    js中的回调函数的理解和使用方法 一. 回调函数的作用 js代码会至上而下一条线执行下去,但是有时候我们需要等到一个操作结束之后再进行下一个操作,这时候就需要用到回调函数. 二. 回调函数的解释 因为 ...

  8. 【JVM虚拟机】(8)--深入理解Class中--方法、属性表集合

    #[JVM虚拟机](8)--深入理解Class中--方法.属性表集合 之前有关class文件已经写了两篇博客: 1.[JVM虚拟机](5)---深入理解JVM-Class中常量池 2.[JVM虚拟机] ...

  9. 理解 ES6 Generator-next()方法

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

随机推荐

  1. 【网络收集】如何修改vs tfs的登录名和密码 .

    连接TFS时,如果本机保存了用户的网络密码,不会出现用户名和密码的输入框,若要更换TFS的用户名和密码,需按以下步骤操作:控制面板--->用户账号--->管理网络密码,此时会列出所有保存了 ...

  2. 23----2013.07.01---Div和Span区别,Css常用属性,选择器,使用css的方式,脱离文档流,div+css布局,盒子模型,框架,js基本介绍

    01 复习内容 复习之前的知识点 02演示VS创建元素 03div和span区别 通过display属性进行DIV与Span之间的转换.div->span 设置display:inline   ...

  3. Game start

    今天开始有计划的码代码吧!!我可是以后要进微软或者google的男人.初步计划先学习编程之美吧,每天码一到题的解法,每天每天每天..然后是ACM竞赛基础,每天一节同上.最后..不对,冷静冷静,我已经没 ...

  4. Warning: Permanently added '...' (RSA) to the list of known hosts --Windows下git bash 警告处理

    原链接地址 StackOverflow 处理方法: 创建文件~/.ssh/config, 此处对应windows当前用户目录下的.ssh文件夹 增加如下语句 UserKnownHostsFile ~/ ...

  5. php中magic_quotes_gpc对unserialize的影响

    昨天朋友让我帮他解决下他网站的购物车程序的问题,程序用的是PHPCMS,换空间前是好的(刚换的空间),具体问题是提示成功加入购物车后跳转到购物车页面,购物车里为空. 我看了下代码,大致的原理就是将产品 ...

  6. [老老实实学WCF] 第七篇 会话

    老老实实学WCF 第七篇 会话 通过前几篇的学习,我们已经掌握了WCF的最基本的编程模型,我们已经可以写出完整的通信了.从这篇开始我们要深入地了解这个模型的高级特性,这些特性用来保证我们的程序运行的高 ...

  7. S(tuple)类及可选(Optional)类型型

    元组将多个值组合为单个值.元组内的值可以是任意 类型,各元素不必是相同的类型.元组在作为函数返 回值时尤其有用. 1.定义方法1 let http404Error= (404,"Not Fo ...

  8. PHP的接口(interface)

    接口声明了函数和字段,但不会给出实现的细节 规则: 1.类全部为抽象方法(不需要声明abstract) 2.接口抽象方法必须是public 3.成员(字段)必须是常量 interface Comput ...

  9. DOM结构学习备忘

    1.动态修改页面title: document.title="项目启动33"; 2.IE中打开UTF-8编码的网页中title显示空白页的问题 3.

  10. Codevs 2898 卢斯的进位制

    时间限制: 1 s  空间限制: 32000 KB  题目等级 : 青铜 Bronze 题目描述 Description 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母 ...