tf.nn.dropout 激活函数
tf.nn.dropout(x,keep_prob,noise_shape=None,seed=None,name=None)
参数:
x:一个浮点型Tensor.
keep_prob:一个标量Tensor,它与x具有相同类型.保留每个元素的概率.
noise_shape:类型为int32的1维Tensor,表示随机产生的保持/丢弃标志的形状.
seed:一个Python整数.用于创建随机种子.
name:此操作的名称(可选).
返回:
该函数返回与x具有相同形状的Tensor.
该函数使x的一部分(概率大约为keep_prob)变为0,其余变为x/keep_prob,
noise_shape可以使得矩阵x一部分行全为0或者部分列全为0
sample
with tf.Session() as sess:
d = tf.to_float(tf.reshape(tf.range(1,17),[4,4]))
sess.run(tf.global_variables_initializer())
print(sess.run(tf.shape(d)))
print(sess.run(d[0]))
# 矩阵有一半左右的元素变为element/0.5,其余为0
dropout_a44 = tf.nn.dropout(d, 0.5, noise_shape = None)
result_dropout_a44 = sess.run(dropout_a44)
print(result_dropout_a44)
# 行大小相同4,行同为0,或同不为0
dropout_a41 = tf.nn.dropout(d, 0.5, noise_shape = [4,1])
result_dropout_a41 = sess.run(dropout_a41)
print(result_dropout_a41)
# 列大小相同4,列同为0,或同不为0
dropout_a24 = tf.nn.dropout(d, 0.5, noise_shape = [1,4])
result_dropout_a24 = sess.run(dropout_a24)
print(result_dropout_a24)
#不相等的noise_shape只能为1
output
[[ 0. 4. 0. 8.]
[10. 12. 14. 0.]
[ 0. 20. 22. 0.]
[26. 28. 30. 32.]]
[[ 2. 4. 6. 8.]
[10. 12. 14. 16.]
[18. 20. 22. 24.]
[ 0. 0. 0. 0.]]
[[ 0. 0. 6. 0.]
[ 0. 0. 14. 0.]
[ 0. 0. 22. 0.]
[ 0. 0. 30. 0.]]
tf.nn.dropout 激活函数的更多相关文章
- TensorFlow函数教程:tf.nn.dropout
tf.nn.dropout函数 tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) 定义在:tensorflow ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- Tensorflow学习笔记(2):tf.nn.dropout 与 tf.layers.dropout
A quick glance through tensorflow/python/layers/core.py and tensorflow/python/ops/nn_ops.pyreveals t ...
- tensorflow 笔记11:tf.nn.dropout() 的使用
tf.nn.dropout:函数官网说明: tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) Defined ...
- TensorFlow学习---tf.nn.dropout防止过拟合
一. Dropout原理简述: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层. Dropout就是在不同的训练过程中随机扔掉一部分神经元.也 ...
- tf.nn.dropout
tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) 此函数是为了防止在训练中过拟合的操作,将训练输出按一定规则进行变 ...
- TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题
一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让 ...
- TensorFlow学习笔记 速记1——tf.nn.dropout
tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None,name=None) 上面方法中常用的是前两个参数: 第一个参数 x:指输入: 第二个 ...
- tf.nn.relu6 激活函数
tf.nn.relu6(features,name=None) 计算校正线性6:min(max(features, 0), 6) 参数: features:一个Tensor,类型为float,doub ...
随机推荐
- void指针和数组指针之间的转换
由于void* 可以被任何指针赋值,所以以void*作为函数参数可以使得接口更容易接受不同类型的参数,不过需要注意的时,实际操作时还需要利用强制类型转换,将指针转换为原类型,否则在内存上会有问题. 一 ...
- git提交更改都是一个作者
为什么提交到github的commit都是一个作者 参考链接 重要知识点讲解 问题如下所示 git是分布式去中心化的管理系统 ssh秘钥对生成.并把id_rsa.pub加入github.com中(这个 ...
- 如何在win10下使用Ubuntu中的crontab自动执行任务
win10下如何下载ubuntu 1.打开Microsoft Store,搜索ubuntu,选择其一(我选了第一个),点击获取,耐心等待安装即可: 2.安装完成可在开始栏找到: 使用cront ...
- Oracle连接别人数据库
方法一:在开始菜单中,找到oracle11g-应用程序开发-SQL PLUS.双击SQL PLUS. 弹出的SQL Plus框中,输入数据库实例的用户名和密码,按enter键. 如果oracle服务器 ...
- MySQL数据库02
MySQL数据库 前言: 前面我们了解了什么是数据库,什么是MySQL数据库以及如何运用,接下来我们接着深入学习MySQL. (提前声明,以下所提供的事例不标准,仅供参考) 数据库的备份与还原: 备份 ...
- Linux上安装配置Keepalived
Linux上安装配置Keepalived 1.下载 自行去Keepalived官网进行下载,也可以通过如下链接进行下载2.0.18版本(目前的稳定版) 链接:https://pan.baidu.com ...
- [A*,启发式搜索] [SCOI2005] 骑士精神
链接:https://ac.nowcoder.com/acm/problem/20247来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言52428 ...
- OpenCV-Python 用于角点检测的FAST算法 | 四十一
目标 在本章中, 我们将了解FAST算法的基础知识. 我们将使用OpenCV功能对FAST算法进行探索. 理论 我们看到了几个特征检测器,其中很多真的很棒.但是,从实时应用程序的角度来看,它们不够快. ...
- OpenCV-Python 读取显示视频 | 六
目标 学习读取视频,显示视频和保存视频. 学习从相机捕捉并显示它. 你将学习以下功能:cv.VideoCapture(),cv.VideoWriter() 从相机中读取视频 通常情况下,我们必须用摄像 ...
- 使用TensorFlow v2.0构建卷积神经网络
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...