tf.nn.dropout 激活函数
tf.nn.dropout(x,keep_prob,noise_shape=None,seed=None,name=None)
参数:
x:一个浮点型Tensor.
keep_prob:一个标量Tensor,它与x具有相同类型.保留每个元素的概率.
noise_shape:类型为int32的1维Tensor,表示随机产生的保持/丢弃标志的形状.
seed:一个Python整数.用于创建随机种子.
name:此操作的名称(可选).
返回:
该函数返回与x具有相同形状的Tensor.
该函数使x的一部分(概率大约为keep_prob)变为0,其余变为x/keep_prob,
noise_shape可以使得矩阵x一部分行全为0或者部分列全为0
sample
with tf.Session() as sess:
d = tf.to_float(tf.reshape(tf.range(1,17),[4,4]))
sess.run(tf.global_variables_initializer())
print(sess.run(tf.shape(d)))
print(sess.run(d[0]))
# 矩阵有一半左右的元素变为element/0.5,其余为0
dropout_a44 = tf.nn.dropout(d, 0.5, noise_shape = None)
result_dropout_a44 = sess.run(dropout_a44)
print(result_dropout_a44)
# 行大小相同4,行同为0,或同不为0
dropout_a41 = tf.nn.dropout(d, 0.5, noise_shape = [4,1])
result_dropout_a41 = sess.run(dropout_a41)
print(result_dropout_a41)
# 列大小相同4,列同为0,或同不为0
dropout_a24 = tf.nn.dropout(d, 0.5, noise_shape = [1,4])
result_dropout_a24 = sess.run(dropout_a24)
print(result_dropout_a24)
#不相等的noise_shape只能为1
output
[[ 0. 4. 0. 8.]
[10. 12. 14. 0.]
[ 0. 20. 22. 0.]
[26. 28. 30. 32.]]
[[ 2. 4. 6. 8.]
[10. 12. 14. 16.]
[18. 20. 22. 24.]
[ 0. 0. 0. 0.]]
[[ 0. 0. 6. 0.]
[ 0. 0. 14. 0.]
[ 0. 0. 22. 0.]
[ 0. 0. 30. 0.]]
tf.nn.dropout 激活函数的更多相关文章
- TensorFlow函数教程:tf.nn.dropout
tf.nn.dropout函数 tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) 定义在:tensorflow ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- Tensorflow学习笔记(2):tf.nn.dropout 与 tf.layers.dropout
A quick glance through tensorflow/python/layers/core.py and tensorflow/python/ops/nn_ops.pyreveals t ...
- tensorflow 笔记11:tf.nn.dropout() 的使用
tf.nn.dropout:函数官网说明: tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) Defined ...
- TensorFlow学习---tf.nn.dropout防止过拟合
一. Dropout原理简述: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层. Dropout就是在不同的训练过程中随机扔掉一部分神经元.也 ...
- tf.nn.dropout
tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) 此函数是为了防止在训练中过拟合的操作,将训练输出按一定规则进行变 ...
- TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题
一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让 ...
- TensorFlow学习笔记 速记1——tf.nn.dropout
tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None,name=None) 上面方法中常用的是前两个参数: 第一个参数 x:指输入: 第二个 ...
- tf.nn.relu6 激活函数
tf.nn.relu6(features,name=None) 计算校正线性6:min(max(features, 0), 6) 参数: features:一个Tensor,类型为float,doub ...
随机推荐
- 记 2020蓝桥杯校内预选赛(JAVA组) 赛后总结
目录 引言 结果填空 1. 签到题 2. 概念题 3. 签到题 4. 签到题 程序题 5. 递增三元组[遍历] 6. 小明的hello[循环] 7. 数位递增[数位dp] 8. 小明家的草地[bfs] ...
- oracle中的创建过程,函数,包
一.创建存储过程 存储过程是在oracle中存取完成特定业务逻辑的代码块.存储过程是命名块,匿名块不存在数据库中,命名块会存储到数据库中,匿名块每次运行都需要提前编译,命名块一次存储,只会编译一次.命 ...
- 最详细的 Spring Boot 多模块开发与排坑指南
创建项目 创建一个 SpringBoot 项目非常的简单,简单到这里根本不用再提.你可以在使用 IDEA 新建项目时直接选择 Spring Initlalize 创建一个 Spring Boot 项目 ...
- SpringMVC框架——视图解析
SpringMVC视图解析,就是将业务数据绑定给JSP域对象,并在客户端进行显示. 域对象: pageContext.request.session.application 业务数据绑定是有ViewR ...
- hibernate连接oracle
<?xml version='1.0' encoding='UTF-8'?> <!DOCTYPE hibernate-configuration PUBLIC & ...
- Chrome80调整SameSite策略对IdentityServer4的影响以及处理方案(翻译)
首先,好消息是Goole将于2020年2月份发布Chrome 80版本.本次发布将推进Google的"渐进改良Cookie"策略,打造一个更为安全和保障用户隐私的网络环境. 坏消息 ...
- nmap端口扫描工具安装和使用方法
nmap(Network Mapper)是一款开源免费的针对大型网络的端口扫描工具,nmap可以检测目标主机是否在线.主机端口开放情况.检测主机运行的服务类型及版本信息.检测操作系统与设备类型等信息. ...
- 1036. 跟奥巴马一起编程(15) Java版
美国总统奥巴马不仅呼吁所有人都学习编程,甚至以身作则编写代码,成为美国历史上首位编写计算机代码的总统.2014年底,为庆祝"计算机科学教育周"正式启动,奥巴马编写了很简单的计算机代 ...
- 面试刷题26:新冠攻击人类?什么攻击java平台?
可恶的新冠病毒攻击人类,搞得IT就业形势相当不好?好在有钟南山院士带领我们提前开展好了防护工作! java作为基础平台安装在各种移动设备,PC,小型机,分布式服务器集群,各种不同的操作系统上.所以,对 ...
- spring @EnableAspectJAutoProxy背后的那些事(spring AOP源码赏析)
在这个注解比较流行的年代里,当我们想要使用spring 的某些功能时只需要加上一行代码就可以了,比如: @EnableAspectJAutoProxy开启AOP, @EnableTransaction ...